Effect of Energy Factors on the Structure and Substructure Characteristics of Hafnium Diboride Films Deposited by RF Magnetron Sputtering

A. A. Goncharov$^{1}$, A. V. Zykov$^{2}$, A. N. Yunda$^{1}$, I. V. Shelest$^{1}$, V. V. Buranich$^{1}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine

Received: 04.09.2019; final version - 17.12.2019. Download: PDF

In this paper, the influence of energy factors, such as the bias potential, current density, deposition rate, on the formation of the structure and substructure of hafnium diboride films deposited using RF magnetron sputtering is analysed. As shown, the structural changes from a quasi-amorphous to a nanocrystalline state with a growth texture occur due to changes in energy factors.

Key words: magnetron sputtering, deposition conditions, structure, substructure, hafnium diboride film.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i06/0815.html

DOI: https://doi.org/10.15407/mfint.42.06.0815

PACS: 61.46.-w, 62.25.Mn, 68.55.jm, 68.55.Nq, 81.07.Bc, 81.15.Cd

Citation: A. A. Goncharov, A. V. Zykov, A. N. Yunda, I. V. Shelest, and V. V. Buranich, Effect of Energy Factors on the Structure and Substructure Characteristics of Hafnium Diboride Films Deposited by RF Magnetron Sputtering, Metallofiz. Noveishie Tekhnol., 42, No. 6: 815—827 (2020)


REFERENCES
  1. A. A. Goncharov, S. N. Dub, A.V. Agulov, and V. V. Petukhov, J. Superhard Mater., 37, No. 6: 422 (2015). Crossref
  2. A. A. Goncharov, A. N. Yunda, H. Komsta, and Rogalski, Acta Phys. Pol. A, 132, No. 2: 270 (2017). Crossref
  3. M. Mikula, B. Grančič, T. Roch, T. Plecenik, I. Vávra, E. Dobročka, A. Šatka, V. Buršíková, M. Držík, M. Zahoran, A. Plecenik, and Kúš, Vacuum, 85, No. 9: 866 (2011). Crossref
  4. J. Musil, J. Šícha, D. Heřman, and R. Čerstvý, J. Vac. Sci. Technol. A, 2, No. 4: 666 (2007). Crossref
  5. J. A. Thornton, J. Vac. Sci. Technol., 11, No. 4: 666 (1974). Crossref
  6. C. Mitterer, P. H. Mayrhofer, E. Kelesoglu, R. Wiedemann, and H. Oettel, Metallkd., 90, No. 8: 602 (1999).
  7. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol. A, 21, No. 5: S117 (2003). Crossref
  8. J. Musil, M. Jaroš, R. Čerstvý, and S. Haviar, J. Vac. Sci. Technol. A, 35, No. 2: 020601 (2017). Crossref
  9. J. Musil and M. Jaroš, J. Vac. Sci. Technol. A, 35, No. 6: 060605 (2017). Crossref
  10. J. Musil and S. Kadlec, Vacuum, 40, No. 50: 435 (1990). Crossref
  11. J. W. Coburn and E. Kay, J. Appl. Phys., 43, No. 12: 4965 (1972). Crossref
  12. B. Window and N. Savvides, J. Vac. Sci. Technol. A, 4, No. 2: 196 (1986). Crossref
  13. K. Ellmer, J. Phys. D: Appl. Phys., 33, No. 4: R17 (2000). Crossref
  14. A. A. Goncharov, V. A. Konovalov, G. K. Volkova, and V. A. Stupak, Phys. Met. Metallogr., 108, No. 4: 368 (2009). Crossref
  15. A. V. Agulov, A. A. Goncharov, V. A. Stupak, and V. V. Petukhov, Inorg. Mater., 50, No. 5: 460 (2014). Crossref
  16. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz [X-Ray Diffraction and Electron-Optical Analysis] (Moscow: MISIS: 2002) (in Russian).
  17. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, No. 6: 1564 (1992). Crossref
  18. A. A. Goncharov, S. N. Dub, and A. V. Agulov, Phys. Met. Metallogr., 14, No. 1: 95 (2013). Crossref
  19. A. A. Goncharov, Phys. Met. Metallogr., 111, No. 3: 314 (2011). Crossref