Features of Thermoplastic Deformations of Quasi-Anisotropic 2D Layers of Indium

M. D. Raranskyi, A. V. Oliinych-Lysiuk, I. G. Kurek, O. O. Tkach, R. Yu. Tashchuk, O. V. Lysiuk

Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine

Received: 27.11.2019. Download: PDF

The changes in character of deformations in thin indium layers as a function of temperature and directions in crystals during rigid low-temperature thermomechanical cycling in the range of 2–300 K are investigated. As determined, the growth of anisotropy in thermal-elastic deformations brings about ‘negative’ dilations in some crystallographic directions under the stress $\sim {\sigma_B}$ in the range of 15–(80)100 K. It occurs at the process of transition from isotropic polycrystalline contacts to quasi-anisotropic 2D-nanocontacts in this metal. Within the framework of a dislocation model, the mechanisms of accumulation of such level of mechanical tension under conditions of limited space and minimal mobility of dislocations are analyzed in indium layers. The height values of Peierls barriers for kinks at dislocations and the coefficients of their transparency in indium are estimated as well. High probability of overcoming the barriers arises when kinks solitons penetrate them (tunnelling) in such crystallographic directions for which Poisson’s ratios $\nu \sim$0.5. These directions can serve as relaxation channels for destructive stresses accumulated in the layer.

Key words: indium 2D nanolayers, negative dilations, Peierls barriers, kink tunnelling.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i07/1015.html

DOI: https://doi.org/10.15407/mfint.42.07.1015

PACS: 61.72.Lk, 62.20.de, 62.20.dj, 62.25.Mn, 65.40.De, 81.40.Gh

Citation: M. D. Raranskyi, A. V. Oliinych-Lysiuk, I. G. Kurek, O. O. Tkach, R. Yu. Tashchuk, and O. V. Lysiuk, Features of Thermoplastic Deformations of Quasi-Anisotropic 2D Layers of Indium, Metallofiz. Noveishie Tekhnol., 42, No. 7: 1015—1027 (2020)

  1. N. A. Figurovskiy, Otkrytie Elementov i Proiskhozhdenie Ikh Nazvaniy [The Discovery of the Elements and the Origin of their Names] (Moscow: Nauka: 1970) (in Russian).
  2. K. A. Bolshakov, Khimiya i Tekhnologiya Redkikh i Rasseyannykh Elementov [Chemistry and Technology of Rare and Scattered Elements] (Moscow: Vysshaya Shkola: 1976), vol. 2, p. 368 (in Russian).
  3. P. I. Fedorov and A. D. Akchurin, Indium (Moscow: Nauka: 2000) (in Russian).
  4. X. Cheng, C. Liu, and V. V. Silberschmidt, Comp. Mater. Sci., 52 (1): 274 (2012). Crossref
  5. G. Hofmann, D. Chen, G. Bergmann, G. Hammond, M. Hanke, K. Haughian, D. Heinert, J. Hough, A. Khalaidovski, J. Komma, H. Lück, E. Majorana, M. Masso Reid, P. G. Murray, L. Naticchioni, R. Nawrodt, S. Reid, S. Rowan, F. Schmidl, C. Schwarz, P. Seidel, T. Suzuki, T. Tomaru, D. Vine, and K. Yamamoto, Classical and Quantum Gravity, 32, No. 24: 245013 (2015). Crossref
  6. M. D. Raransky, V. Balazyuk, and M. Gunko, Yavyshche Auksetychnosti v Tverdykh Tilakh [The Phenomenon of Auxetics in Solids] (Chernivtsi: Print Art: 2016) (in Ukrainian).
  7. M. D. Raransky, A. V. Oliynych-Lysyuk, R. Yu. Tashchuk, O. Yu. Tashchuk, and O. V. Lysyuk, Metallofiz. Noveishie Tekhnol, 40, No. 11: 1453 (2018). Crossref
  8. I. Novikova, Teplovoe Rasshyrenie Tverdykh Tel [Thermal Expansion of Solids] (Moscow: Nauka: 1974) (in Russian).
  9. X. Cheng, C. Liu, and V. V. Silberschmidt, Auxetic Materials and Structures (Berlin: Springer: 2015) (in German).
  10. H. Landolt and R. Börnstein, Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Second and Higher Order Constants (Berlin: Springer Verlag: 1992) (in German).
  11. A. V. Bobylev, Mekhanicheskie i Tekhnologicheskie Svoystva Metallov [Mechanical and Technological Properties of Metals] (Moscow: Metallurgiya: 1980) (in Russian).
  12. S. P. Yatsenko, Indiy. Svoystva i Primenenie [Indium. Properties and Application] (Moscow: Nauka: 1987) (in Russian).
  13. J. Hirth and I. Lot, Teoriya Dislokatsiy [Theory of Dislocations] (Moscow: Atomizdat: 1972) (in Russian).
  14. V. A. Melik-Shakhnazarov, I. I. Mirzoeva, and I. A. Naskidashvili, JETP Letters, 43: 316 (1986).
  15. M. M. Arakelyan, Bulletin of the N.A.S. of Armenia. Physics, 50: 126 (2015) (in Russian).
  16. O. N. Ivanov and I. V. Sudzhanskaya, Journal of Nano- and Electronic Physics, 7, No. 2 (2015) (in Ukrainian).