Formation and Structure of Al–Si Layer on Contact Surface of Aluminium–Reactive Flux of KF–AlF$_3$–K$_2$SiF$_6$ System

O. M. Sabadash, S. V. Maksymova

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 02.08.2019; final version - 07.05.2020. Download: PDF

When heating the reactive flux of the KF–AlF$_3$–K$_2$SiF$_6$ system on an aluminium substrate, two processes occur; reduction of silicon from potassium hexafluorosilicate; contact-reactive melting of silicon with aluminium. As a result, an Al–Si alloy layer is formed on the reaction surface, the composition of which is close to hypereutectic, which is confirmed by the results of X-ray microanalysis. The microstructure of the crystallized Al–Si metal layer contains aluminium-based solid solution grains and a hypereutectic component with a silicon concentration (% wt.): 17.18 in intercrystalline areas, as well as individual discrete inclusions of the lamellar phase, which is close in stoichiometric composition to the compound FeSiAl$_5$. Comparative experiments on a graphite substrate showed that the silicon content in the flux residues after heating corresponds to its content in the initial flux composition.

Key words: reactive flux of the KF–AlF$_3$–K$_2$SiF$_6$ system, contact melting, silicon, aluminium, Al–Si metal layer.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1079.html

DOI: https://doi.org/10.15407/mfint.42.08.1079

PACS: 61.20.Qg, 61.25.Mv, 61.66.Fn, 81.15.Lm, 82.45.Mp

Citation: O. M. Sabadash and S. V. Maksymova, Formation and Structure of Al–Si Layer on Contact Surface of Aluminium–Reactive Flux of KF–AlF$_3$–K$_2$SiF$_6$ System, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1079—1092 (2020) (in Ukrainian)


REFERENCES
  1. G. V. Samsonov, A. L. Borisova, T. G. Zhidkova, T. N. Ziatokova, Yu. P. Kaloshina, A. F. Kiseleva, P. S. Kislyiy, M. S. Kovalchenko, T. Ya. Kosolapova, Ya. S. Malahov, V. Ya. Malahov, A. D. Panasyuk, V. I. Slavuta, and N. I. Tkachenko, Fiziko-Khimicheskie Svoystva Okislov [Physical and Chemical Properties of Oxides] (Moscow: Metallurgiya: 1978) (in Russian).
  2. D. M. Rabkin, V. G. Ignatev, and I. V. Dovbischenko, Dugovaya Svarka Alyuminiya i Ego Splavov [Arc Welding of Aluminium and Its Alloys] (Moscow: Mashinostroenie: 1982) (in Russian).
  3. S. V. Lashko and N. F. Lashko, Payka Metallov [Brazing Metals] (Moscow: Mashinostroenie: 1988) (in Russian).
  4. A. M. Nikitinskiy, Payka Alyuminiya i Ego Splavov [Brazing of Aluminium and Its Alloys] (Moscow: Mashinostroenie: 1983) (in Russian).
  5. NOCOLOK Flux Brazing Technology. Manual. Solvay Fluorund Derivate GmbH (1997) (in German).
  6. F. Gao, H. Zhao, Dusan P. Sekulic, Y. Qian, and L. Walker, Mater. Sci. Eng. A, 337, Iss. 1-2: 228 (2002). Crossref
  7. D. M. Turriff, S. F. Corbin, and M. Kozdras, Acta Mater., 58, No. 4: 1332 (2010). Crossref
  8. F. Gao, D. P. Sekulic, Y. Y. Qian, and J. G. Morris, Mater. Sci. Technol., 20, 577 (2004). Crossref
  9. J. Lacaze, B. Jacques, T. Mazet, and M. Vynnycky, Transactions of the Indian Institute of Metals, 71, No. 11: 2623 (2018). Crossref
  10. M. Vynnycky and J. Lacaze, J. Eng. Math., 116, No. 1: 73 (2019). Crossref
  11. J. A. Warren, W. J. Boettinger, and A. R. Roosen, Acta Mater., 46, No. 9: 3247 (1998). Crossref
  12. T. J. Singler, S. Su, L. Yin, and B. T. Murray, J. Mater. Sci., 47: 8261 (2012). Crossref
  13. R. S. Timsit and B. J. Janeway, Welding J., 73, No. 6: 119 (1994).
  14. T. Born and H.-J. Belt, Solderless Aluminum Brazing: Patent US 6,019,856 A, B23K 35/00 (01.02.2000).
  15. A. V. Poltorybat'ko, D. A. Shaklein, and V. E. Zadov, Sposob Podgotovki Poverkhnosti Alyuminiya i Ego Splavov dlya Payki: Patent RU 2 324 578 C2, B23K 1/20, 103/10, C23C 22/34, C23G 1/02, 1/14 (2006.01) (27.11.2007) (in Russian).
  16. O. M. Sabadash, V. F. Khorunov, and O. O. Andriyko, Reaktyvnyy Flyus dlya Payannya Alyuminiyu ta Yoho Splaviv: Patent UA 103963 C2 B23K 35/363 (2006.01) (10.12.2013) (in Ukrainian).
  17. A. A. Andriyko, E. V. Panov, B. V. Yakovliev, V. F. Khorunov, and O. M. Sabadash, Ukrayinskyy Khimichnyy Zhurnal, 63, No. 10: 121 (1997) (in Ukrainian).
  18. L. Kolditz, W. Wilde, and U. Bentrup, Zeitschrift für Chemie, 23, No. 7: 246 (1983) (in German). Crossref
  19. Yu. L. Delymarskyy, O. H. Holov, and R. I. Chernov, Ukrayinskyy Khimichnyy Zhurnal, 35, No. 6: 563 (1969) (in Ukrainian).
  20. TU 6-09-1650-88 Kaliy Kremneftorid (K2SiF6) [Potassium Silicofluoride] (in Russian).
  21. V. F. Khorunov and O. M. Sabadash, Brazing of Aluminium and Aluminium to Steel: in Advances in Brazing (Eds. D. P. Sekulić) (Oxford-Cambridge: WPL: 2013), p. 249. Crossref
  22. GOST 4784-97 Alyuminiy i Alyuminievye Splavy Deformirovannye. Marki [Standard 4784-97 Aluminium and Wrought Aluminium Alloys. Grades] (in Russian).
  23. TU 1915-109-081-2004. Grafit Melkozernistyy Plotnyy. Zagotovki i Izdeliya [Graphite Fine Granular Dense. Blanks and Products] (in Russian).
  24. Rong Chen, Genhua Wu, and Qiyun Zhang, J. Am. Ceramic Society, 83, No. 12: 3196 (2000). Crossref
  25. M. E. Pozin, B. A. Kopylov, G. V. Belnichenko, L. Y. Tereschenko, I. I. Orehov, B. A. Dmitrevskyi, and V. V. Zubov, Raschety po Tekhnologii Neorganicheskikh Veshchestv [Inorganic Matter Technology Calculations] (Leningrad: Khimiya: 1977) (in Russian).
  26. L. F. Mondolfo, Struktura i Svoystva Alyuminievykh Splavov [Aluminium Alloys: Structure and Properties] (Moscow: Metallurgiya: 1979) (in Russian).