Fractal-Percolation Approach for Determination of Structural and Mechanical Properties of Metal-Filled Polyurethane Auxetics

T. M. Shevchuk$^{1}$, M. A. Bordyuk$^{2}$, V. V. Krivtsov$^{1}$, V. A. Mashchenko$^{3}$

$^{1}$Rivne State University of Humanities, 12 Stepan Bandera Str., UA-33000 Rivne, Ukraine
$^{2}$Rivne Medical Academy, 53 Karnaukhova Str., UA-33000 Rivne, Ukraine
$^{3}$Odesa State Academy of Technical Regulation and Quality, 15 Kovalska Str., UA-65020 Odesa, Ukraine

Received: 31.07.2019; final version - 03.03.2020. Download: PDF

The use of fractal and percolation approaches to the metal-filled polymer systems enables to analyze processes of their structure formation. The main aim of research paper is to define structural parameters and mechanical properties of metal-filled polyurethane systems based on results of ultrasonic study using fractal analysis and percolation approach. Polyurethanes auxetics filled with particles of iron (Fe), molybdenum (Mo) and wolfram (W) with radius between 0.3–1.0 $\mu$m are investigated. Polyurethane composites with polymer matrix are made of thermoplastic polyurethane synthesized from 4.4'-Methylen diphenyl diisocyanate, 1.4-Butanediol and Poly(tetramethylene ether)glycol with molecular weight 1500. Metal-filled polymer systems are obtained with the help of hot-pressing in T-p mode just after the components were all mixed. The results of acoustic research of investigated metal-filled thermoplastic polyurethane systems with 52% vol. Fe, 48% vol. W, 43% vol. Mo have proven to be with negative Poisson’s constant. Based on percolation cluster model of metal-filled polyurethane auxetics their fractal dimensions and percolation indexes are distinguished. Usage of fractal-percolation approach to the metal-filled polymer model enables us to estimate structural-microscopic (geometrics) dimensions of boundary and interface layers as well as mechanical properties of auxetics. Model calculations and experimental values of their properties are compared. As shown, the filler particles, boundary and interface layers take part in deformation processes conditioned by negative Poisson’s constant. Models of application are demonstrated as to the referenced modelling in specifying operating features of polymer composite materials.

Key words: metal filler, polymer auxetic, Poisson’s constant, percolation cluster, fractal dimension, modulus of deformation.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i09/1293.html

DOI: https://doi.org/10.15407/mfint.42.09.1293

PACS: 61.41.+e, 61.43.Bn, 61.43.Hv, 82.35.Lr, 82.35.Np, 83.80.Wx

Citation: T. M. Shevchuk, M. A. Bordyuk, V. V. Krivtsov, and V. A. Mashchenko, Fractal-Percolation Approach for Determination of Structural and Mechanical Properties of Metal-Filled Polyurethane Auxetics, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1293—1302 (2020)


REFERENCES
  1. V. V. Novikov and K. W. Wojciechowski, FTT, 41, No. 12: 2147 (1999) (in Russian).
  2. Y-C. Wang and R. Lakes, Int. J. Solids Structures, 39: 4825 (2002). Crossref
  3. D. A. Konek, K. V. Voytsekhovsky, Yu. M. Plaskachevskyy, and S. V. Shyl'ko, Mekh. Komp. Mat. i Konstr., 10, No. 1: 35 (2004) (in Russian).
  4. A. L. Tolstov, V. F. Matyushov, D. A. Klymchuk, and E. V. Lebedev, Polym. J., 41, No. 1: 26 (2019) (in Ukranian). Crossref
  5. T. M. Shevchuk, M. A. Bordyuk, V. V. Krivtsov, and V. A. Mashchenko, Polym. J., 41, No. 4: 264 (2019) (in Ukrainian). Crossref
  6. B. Brandel and R. S. Lakes, J. Mater. Sci., 36: 5885 (2001). Crossref
  7. G. He, P. Liu, A. C. Griffin, C. W. Smith, and K. E. Evans, Macromol. Chem. Phys., 206: 233 (2005). Crossref
  8. S. Xinchum and R. S. Lakes, physica status solidi (b), 244, No. 3: 1008 (2007). Crossref
  9. E. O. Martz, R. S. Lakes, and J. B. Park, Cell. Polym., 15: 349 (1996).
  10. A. Lowe and R. S. Lakes, Cell. Polym., 19: 157 (2000).
  11. Y. J. Park and J. K. Rim, Adv. Mater. Sci. Eng., 1 (2013).
  12. B. S. Kolupaev, Yu. S. Lipatov, V. I. Nikitchuk, N. A. Bordyuk, and O. M. Voloshin, Dopovidi AN Ukrayiny, 3: 130 (1993) (in Russian).
  13. V. U. Novykov and H. V. Kozlov, Uspekhi Khimii, 69, No. 6: 572 (2000) (in Russian).
  14. A. S. Balankyn, Sinergetika Deformiruemogo Tela [Synergy of the Strained Body] (Moscow: Publ. by USSR Ministry of Defence: 1991) (in Russian).
  15. V. U. Novykov and H. V. Kozlov, Uspekhi Khimii, 69, No. 3: 378 (2000) (in Russian).
  16. H. V. Kozlov, M. A. Hazaev, V. U. Novykov, and A. K. Mykytaev, Pis'ma v ZhTF, 22, No. 16: 31 (1996) (in Russian).
  17. A. Y. Olemskoy and A. Ya. Flat, Usp. Fiz. Nauk, 163, No. 12: 1 (1993) (in Russian). Crossref
  18. L. M. Zelenyi and A. V. Milovanov, Usp. Fiz. Nauk, 174, No. 8: 809 (2004) (in Russian). Crossref
  19. B. S. Kolupaev, Yu. S. Lypatov, V. Y. Nykytchuk, N. A. Bordyuk, and O. M. Voloshyn, Inzh.-Fiz. Zhurnal, 69, No. 5: 726 (1996) (in Russian). Crossref
  20. B. S. Kolupaev and N. A. Bordyuk, Vysokomolek. Soed., 23, No. 7: 1499 (1981) (in Russian).
  21. H. V. Kozlov, Usp. Fiz. Nauk, 185, No. 1: 35 (2015) (in Russian). Crossref