Testing of Electron Beam Technique for NiC Coating Deposition

O. I. Nakonechna$^{1}$, M. G. Dusheiko$^{2}$, N. N. Belyavina$^{1}$, A. M. Kuryliuk$^{1}$, A. S. Osipov$^{3}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$V. M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavodska Str., UA-04074 Kyiv, Ukraine

Received: 22.01.2020; final version - 29.10.2020. Download: PDF

Nanoscaled NiC powder is obtained by mechanical alloying of two equiatomic charges of Ni–carbon nanotubes and Ni–graphite in a high-energy planetary ball mill. Crystal structure of this carbide is a modified ZnS sphalerite type. Powder of NiC carbide is compacted by cold pressing at a pressure of 0.2 GPa, and the material obtained is used as a target for coating deposition by an electron beam technique. Thin films are deposited either on substrates from silicon wafer or fused glass. The phase composition of as-deposited coatings and after annealing at 900°C is studied. As shown, an annealing in air up to 900°С does not lead to cracking or peeling of the coatings from the substrate.

Key words: NiC monocarbide, mechanical alloying, electron beam, thin film, X-ray diffraction.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i12/1659.html

DOI: https://doi.org/10.15407/mfint.42.12.1659

PACS: 61.05.cp, 61.43.Gt, 68.35.Np, 81.05.Je, 81.20.Ev, 81.15.Jj

Citation: O. I. Nakonechna, M. G. Dusheiko, N. N. Belyavina, A. M. Kuryliuk, and A. S. Osipov, Testing of Electron Beam Technique for NiC Coating Deposition, Metallofiz. Noveishie Tekhnol., 42, No. 12: 1659—1665 (2020)


REFERENCES
  1. T. Ujvári, A. Tóth, G. J. Kovács, G. Sáfrán, O. Geszti, G. Radnóczi, and I. Bertóti, Surf. Interface Analysis, 36, No. 8: 760 (2004). Crossref
  2. H. Li, L. Guan, Y. Zhao, Z. Xu, J. Sun, J. Wu, and N. Xu, Mater. Lett., 145: 291 (2015). Crossref
  3. G. Radnóczi, Gy. J. Kovács, G. Sáfrán, K. Sedlácková, O. Geszti, T. Ujvári, and I. Bertóti, Metallic Materials with High Structural Efficiency (Eds. O. N. Senkov, D. B. Miracle, and S. A. Firstov) (Dordrecht: Springer: 2004), p. 101. Crossref
  4. Z. C. Hong and S. T. Shiue, Thin Solid Films, 618: 21 (2016). Crossref
  5. O. I. Nakonechna, N. N. Belyavina, M. M. Dashevskyi, A. M. Kuryliuk, and V. A. Makara, Dopov. Nac. Akad. Nauk Ukr., No. 4: 50 (2019) (in Ukrainian). Crossref
  6. V. K. Portnoi, A. V. Leonov, S. N. Mudretsova, and S. A. Fedotov, Phys. Metals Metallogr., 109, No 2: 153 (2010). Crossref
  7. M. Dashevskyi, O. Boshko, O. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39, No. 4: 541 (2017). Crossref
  8. M. Braic, M. Balaceanu, A. C. Parau, M. Dinu, and A. Vladescu, Vacuum, 120: 60 (2015). Crossref
  9. H. Jiao, C. Yu, Z. Zhang, W. Li, Q. Huang, H. Chen, and Z. Wang, Vacuum, 155: 49 (2018). Crossref
  10. M. Khadem, O. V. Penkov, H. K. Yang, and D. E. Kim, Friction, 5, No. 3: 248 (2017). Crossref
  11. O. I. Nakonechna, M. M. Dashevskyi, O. I. Boshko, V. V. Zavodyanny, and N. N. Belyavina, Prog. Phys. Metals, 20, No. 1: 5 (2019). Crossref