Mathematical Modelling of Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. II. Recrystallization Kinetics

V. V. Kaverinsky, Z. P. Sukhenko

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 26.03.2020; final version - 30.12.2020. Download: PDF

A mathematical physical based semi-empirical model and a corresponding computer program are developed for describing recrystallization process and carbonitrides particles precipitation in deformed austenite. The model is suitable for alloyed steels of a wide range of compositions. The model allows calculating a thermodynamic equilibrium for carbonitride excess phases with solid solution, the kinetics of their nucleation and growth, and their effect on recovery and recrystallization. A detailed description is given for each aspect of the model and its physical nature. Verification of the simulation results with the experimental data taken from published sources confirms the sufficient reliability of the proposed computer model for evaluative calculations. The model’s features are demonstrated by an example that simulates influence of Nb content on recristallization, recovery and nucleation, growth and Ostwald ripping of Nb and Ti carbonitride particles. The simulation shows and numerically predicts the effect of slowing down recrystallization and recovery with increasing in Nb content. That attests significance of the effect of dispersed carbonitrides on recrystallization and recovery. The simulation theoretically predicts an intensification of Ti(C, N) particles precipitation and growth with an increase in the Nb concentration. As another result, it is an increasing the dispersion and number of Nb(C, N) particles with an increase in the Nb concentration owing to more rapid transition to the Ostwald ripening stage, which is characterized by much more slowly average particle size growth than from a supersaturated solid solution.

Key words: recrystallization, kinetics, austenite, steel, modelling.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i02/0235.html

DOI: https://doi.org/10.15407/mfint.43.02.0235

PACS: 05.20.Dd, 05.70.Fh, 61.50.Ks, 64.10.+h, 64.75.Jk, 81.05.Bx

Citation: V. V. Kaverinsky and Z. P. Sukhenko, Mathematical Modelling of Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. II. Recrystallization Kinetics, Metallofiz. Noveishie Tekhnol., 43, No. 2: 235—244 (2021)


REFERENCES
  1. V. V. Kaverinsky and Z. P. Sukhenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 27 (2021). Crossref
  2. V. M. Golod and K. D. Savel'ev, Vychislitel'naya Termodinamika v Materialovedenii [Computational Thermodynamics in Material Science] (Saint Petersburg: Polytechnic University: 2010) (in Russian).
  3. D. F. Sokolov, Razrabotka Modeley Raspada Austenita i Prognozirovaniya Mekhanicheskikh Svoystv pri Kontroliruemoy Prokatke Staley [Development of Austenite Decay Models to Predict the Mechanical Properties of Controlled Rolled Steel]. (Thesis of Disser. for Cand. Tech. Sci.) (Saint Petersburg: Polytechnic University: 2013) (in Russian).
  4. N. Saunders and A. P. Miodownik, CALPHAD. Calculation of Phase Diagrams (Guildford: Pergamon Press: 2005).
  5. S. F. Sokolov, Issledovanie i Modelirovanie Evolyutsii Mikrostruktury i Soprotivleniya Deformatsii Staley pri Goryachey Obrabotke Davleniem [Investigation and Modelling of the Evolution of the Microstructure and Deformation Resistance of Steels during Hot Processing] (Thesis of Disser. for Cand. Tech. Sci.) (Saint Petersburg: Polytechnic University: 2013) (in Russian).
  6. H. S. Zurob, Y. Bbrechet, and G. A. Purdy, Acta Mater., 49: 43 (2001). Crossref
  7. H. Buken and E. Kozeschnik, Metall. Mater. Trans. A, 48: 2812 (2017). Crossref
  8. B. Dutta, E. J. Palmiere, and C. M. Sellars, Acta Mater., 49, No. 5: 785 (2001). Crossref
  9. H. S. Zurob, C. R. Hutchison, Y. Brechet, and G. Purdy, Acta Mater., 50, No. 12: 3075 (2002). Crossref
  10. A. J. De Ardo, Int. Materials Reviews, 48, No. 6: 371 (2003). Crossref
  11. A. Smith, H. Luo, D. N. Hanlon, J. Sietsma, and S. Zwaag, ISIJ Int., 44, No. 7: 1188 (2004). Crossref
  12. N. Yu. Zolotorevsky, Modelirovanie Strukturnykh Prevrashcheniy v Metallicheskikh Materialakh [Modelling of Structural Transformations in Metallic Materials] (Saint Petersburg: SPbSTU: 2007) (in Russian).
  13. A. A. Vasilev, S. F. Sokolov, N. G. Kolbasnikov, and D. F. Sokolov, Fizika Tverdogo Tela, 53, No. 11: 2086 (2011) (in Russian).
  14. V. M. Vorotyntsev and V. D. Skupov, Bazovye Tekhnologii Mikro- i Nanoelektroniki [Basic Technologies of Micro- and Nanoelectronics] (Moscow: Prospect: 2017) (in Russian).
  15. Ø. Grong, Metallurgical Modelling of Welding (London: The Institute of Materials: 1997).
  16. H. S. Medina and J. E. Mancilla, ISIJ Int., 36, No. 8: 1070 (1996). Crossref
  17. H. S. Medina and A. Quispe, ISIJ Int., 41, No. 7: 774 (2001). Crossref
  18. H. S. Medina, J. E. Mancilla, and C. A. Hernandes, ISIJ Int., 34, No. 8: 689 (1994). Crossref
  19. H. S. Medina and A. Quispe, ISIJ Int., 36, No. 10: 1295 (1996). Crossref
  20. H. S. Medina and J. E. Mancilla, ISIJ Int., 36, No. 8: 1063 (1996). Crossref
  21. M. Gomez, H. S. Medina, and A. Quispe, ISIJ Int., 42, No. 4: 423 (2002). Crossref
  22. M. Gomez, L. Rancel, and S. F. Medina, Met. Mater. Int., 15, No. 4: 689 (2009). Crossref