Physical and Mathematical Modelling of the Process of Formation of Gradient Metastable Modifications of Carburized Layers of Structural Steels

O. P. Cheiliakh$^{1}$, N. E. Mak-Mak$^{1}$, Y. A. Cheylyakh$^{1}$, M. A. Ryabikina$^{1}$, K. Shimizu$^{2}$

$^{1}$State Higher Education Institute ‘Pryazovskyi State Technical University’, 7 Universytets’ka Str., UA-87555 Mariupol, Ukraine
$^{2}$Muroran Institute of Technology, 27 Mizumoto-cho, 050-8585, Muroran, Hokkaido, Japan

Received: 24.07.2020; final version - 05.03.2021. Download: PDF

An algorithm for cause-and-effects relations of physical-chemical and structural factors with formation of carburized metastable layers and properties of structural steels in the process of their evolution is developed. A physical and mathematical model of varied gradient distribution of carbon and alloying elements along the depth of the carburized layer at cementation of 25KhGT and 50G steels due to the influence on martensite point $M_{\textrm{s}}$ is developed. It demonstrates the quantitative distribution of the phase and structural composition and especially metastable residual austenite ($A_{\textrm{res}}$). The degree of metastability of $A_{\textrm{res}}$ and the kinetics of its deformation-induced martensite $\gamma_{\textrm{res}} \rightarrow \alpha^{'}$ transformation at wear (DIMTW) depend on this distribution, it having a positive influence on wear resistance indices and steels service lives. The distribution of the $M_{\textrm{s}}$ point, the amount of $A_{\textrm{res}}$ and gradient change of the microstructure along the depth of the carburized layer of 50G steel after quenching from different temperatures (from 800 to 1000°С) are established theoretically and experimentally. The quadratic polynomial equations of regression of dependence of $M_{\textrm{s}}$ point, carbon content and amount of $A_{\textrm{res}}$ along the depth of the carburized layer are obtained and experimentally confirmed. In addition, the regularity of wear resistance distribution along the depth of the carburized layer of 25KhGT steel after plasma quenching at 1200–1300°С is established. The wear resistance is happened to be relatively high ($\epsilon_T$ = 6.2–5.3) until $\sim$ 0.4 mm depth, when the amount of $A_{\textrm{res}}$ is equal to 67–48%, and eventually diminishes to $\epsilon_T$ = 1.0–1.1 at 1.3–1.4 mm (when $A_{\textrm{res}}$ is absent). The developed algorithm and constructed physical and mathematical model of the process of carbon saturation of structural steels layers at carburizing with regulation of the gradient distribution of phase and structural modifications along sample thickness allow efficient applying of $A_{\textrm{res}}$ metastable states that realize $\gamma_{\textrm{res}} \rightarrow \alpha^{'}$ DIMTW due to selection of the processes of heat treatment with the aim of increasing the life time of metal wares.

Key words: carburization, quenching, physical and mathematical model, austenite metastability, wear resistance.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i05/0629.html

DOI: https://doi.org/10.15407/mfint.43.05.0629

PACS: 61.50.Ks, 61.66.Dk, 64.10.+h, 64.75.-g, 68.35.Dv, 68.35.Rh

Citation: O. P. Cheiliakh, N. E. Mak-Mak, Y. A. Cheylyakh, M. A. Ryabikina, and K. Shimizu, Physical and Mathematical Modelling of the Process of Formation of Gradient Metastable Modifications of Carburized Layers of Structural Steels, Metallofiz. Noveishie Tekhnol., 43, No. 5: 629—653 (2021) (in Ukrainian)


REFERENCES
  1. Y. Shen, S. Moghadam, F. Sadeghi, K. Paulson, and R. Trice, Int. J. Fatigue, 75: 135 (2015). Crossref
  2. A. Walvekar and F. Sadeghi, Int. J. Fatigue, 95: 264 (2017). Crossref
  3. M. A. Smirnov, V. M. Schastlivtsev, and L. G. Zhuravlev, Osnovy Termicheskoy Obrabotki Stali [Basics of Heat Treatment of Steel] (Moscow: Nauka i Tekhnologii: 2002) (in Russian).
  4. A. L. Geller and V. N. Yurko, Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya, No. 6: 66 (1991) (in Russian).
  5. L. S. Malinov and V. L. Malinov, Ekonomnolegirovannye Splavy s Martensitnymi Prevrashcheniyami i Uprochnyayushchie Tekhnologii [Economically Doped Alloys with Martensitic Transformations and Hardening Technologies] (Kharkiv: NNTs 'KhFTI': 2007) (in Russian).
  6. A. Emamian, Materials Sciences and Applications, 3, No. 8: 519 (2012). Crossref
  7. M. N. Brykov, V. G. Efremenko, and A. V. Efremenko, Iznosostoykost Staley i Chugunov pri Abrazivnom Iznashivanii [Abrasion Resistance of Steels and Cast Irons] (Kherson: Grin': 2014) (in Russian).
  8. O. P. Cheiliakh., N. E. Karavaieva, M. A. Ryabikina, and J. Mikula, Innovative, Cost Effective and Eco-Friendly Fibre-Based Materials for Construction Industry (Krakow: Politechnika Krakowska im. Tadeusza Kostuuszki: 2015), p. 131.
  9. O. P. Cheiliakh, Y. A. Cheiliakh, N. E. Karavaieva et al., Treatamientos Termicos (Heat Treatment of Metals), No. 143: 35 (part 1); No. 144: 25 (part 2) (2014).
  10. V. A. Malinovskaya, Raspredelenie Azota i Ugleroda, Fazovaya Struktura Gradientnykh Sloev i Mekhanicheskie Svoystva Stali 20Kh2N4A posle Nitrotsementatsii [Distribution of Nitrogen and Carbon, Phase Structure of Gradient Layers and Mechanical Properties of 20Kh2N4A Steel after Nitrocarburizing] (Disser. for PhD Tech. Sci.) (Tomsk: 2006) (in Russian).
  11. B. D. Lygdenov, Fazovye Prevrashcheniya v Stalyakh s Gradientnymi Strukturami, Poluchennymi Khimiko-Termicheskoy i Khimiko-Termotsiklicheskoy Obrabotkoy [Phase Transformations in Steels with Gradient Structures Obtained by Chemical-Thermal Treatment and Chemical-Thermal Cycling] (Thesis of Disser. for PhD Tech. Sci.) (Novokuznetsk: 2004) (in Russian).
  12. N. Ye. Mak-Mak, Stvorennya Metastabil'nykh Staniv ta Zmitsnennya Konstruktsiynykh Staley Sposobamy Termichnoyi ta Khimiko-Termichnoyi Obrobky [Creation of Metastable States and Strengthening of Structural Steels by Methods of Thermal and Chemical-Thermal Processing] (Thesis of Disser. for PhD Tech. Sci.) (Mariupol: 2019) (in Ukrainian).
  13. O. P. Cheiliakh and I. V. Kolodyazhna, 1st Mediterranean Conference on Heat Treatment and Surface Engineering (Dec. 1-3, 2009) (Sharm El-Sheikh: 2009).
  14. A. P. Cheylyakh, Ekonomnolegirovannye Metastabil'nye Splavy i Uprochnyayushchie Tekhnologii [Economically Doped Metastable Alloys and Hardening Technologies] (Mariupol: PGTU: 2009) (in Russian).
  15. B. Bhushan, Introduction to Tribology (New York: John Whiley and Sons: 2001).
  16. L. I. Roslyakova and I. N. Roslyakov, Uprochnyayushchie Tekhnologii i Pokry-tiya, No. 4: 32 (2014) (in Russian).
  17. W. D. Callister, Materials Science and Engineering: an Introduction (Wiley: 2007).
  18. S. E. Krylova, Optimizatsiya Sostava i Rezhimov Termicheskoy Obrabotki Srednelegirovannoy Stali dlya Usloviy Slozhnogo Iznosa [Optimization of the Composition and Heat Treatment Modes of Medium-Doped Steel for Severe Wear Conditions] (Disser. for PhD Tech. Sci.) (Orsk: 2009) (in Russian).
  19. A. P. Cheylyakh, M. A. Ryabikina, and N. E. Karavaeva, Mizhnarodna Naukovo-Tekhnichna Konferentsiya 'Universytets'ka nauka-2014' (Mariupol: DVNZ 'PDTU': 2014), vol. I, p. 241(in Russian).
  20. Yu. I. Gustov, Tribotekhnika Stroitel'nykh Mashin i Oborudovaniya [Tribotechnics of Construction Machines and Equipment] (Moscow: Moskovskiy Gosudarstvennyy Stroitelnyy Universitet: 2011) (in Russian).
  21. A. A. Anokhin, Vostochno-Evropeyskiy Zhurnal Peredovykh Tekhnologiy, No. 5: 10 (2003) (in Russian).
  22. K. V. Zhigunov, Mashinostroitel, No. 1: 26 (2004) (in Russian).
  23. S. V. Shchetinin, V. I. Shchetinina, Yu. V. Sergienko, V. I. Fedun, A. V. Budyka, and A. G. Belik, Zakhyst Metalurhiynykh Mashyn vid Polomok, vol. 8: 179 (2005) (in Russian).
  24. V. M. Schastlivtsev and M. A. Filippov, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1: 6 (2005) (in Russian).
  25. R. A. Kulikovskiy, Problemy Tribologii, No. 4: 49 (2012) (in Russian).
  26. V. D. Sadovskiy, E. A. Fokina, Ostatochnyy Austenit v Zakalennoy Stali [Residual Austenite in Hardened Steel] (Moscow: Nauka: 1986) (in Russian).
  27. Yu. M. Dombrovskiy and M. S. Stepanov, Vestnik Mashinostroeniya, No. 8: 79 (2015) (in Russian).
  28. Dorien De Knijf, Roumen Petrov, Cecilia Föjer, and Leo A. I. Kestens, Materials Science and Engineering A, 615: 107 (2014). Crossref
  29. A. P. Cheylyakh and N. E. Karavaeva, 10-aya Nauchno-Prakticheskaya Konferentsiya «Kadry dlya Regiona-Sovremennaya Metallurgiya Novogo Tysyacheletiya» (Lipetsk: LGTU: 2013), part II, p. 64 (in Russian).
  30. O. P. Cheiliakha and N. E. Karavaieva, Science and Education a New Dimension: Natural and Technical Science, Iss. 8: 35 (2015).
  31. V. S. Popov, N. N. Brykov, and M. I. Andrushchenko, Trenie i Iznos, 12, No. 1: 163 (1991) (in Russian).
  32. Y. A. Cheylyakh, O. P. Cheiliakh, N. E. Mak-Mak, and Sh. Kazumichi, Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G. I. Nosova, 14, No. 2: 76 (2016). Crossref
  33. O. P. Cheiliakh, Y. A. Cheiliakh, and N. E. Mak-Mak, International Scientific and Methodological Conference 'University science-2016' (Mariupol: Pryazovskyi State Technical University: 2016), p. 90.