Effect of Grain Size and Deformation Temperature on Mechanical Properties and Failure Behaviour of 316L Austenitic Stainless Steel

Halil Katiksiz, Süleyman Gündüz

Karabük University, Iron and Steel Institute, Balıklar Kayası Campus, 78050 Karabük, Turkey

Received: 08.09.2020; final version - 12.03.2021. Download: PDF

In this work, the effects of grain size and deformation temperature on mechanical properties and failure behaviour of 316L austenitic stainless steel (ASS) are investigated. The cold, warm and hot deformation are carried out at temperatures of 25, 500, and 800°C for the strain rate of 1$\cdot10^{-3}$ s$^{-1}$. The results show that strength and workhardening index of all samples decrease with increasing test temperature; however, decrement in strength and workhardening index is more less in coarse grained samples compared to the finer grained samples. This is due to dynamic strain ageing (DSA) occurred in the coarse grained samples which showed more pronounced serrated behaviour after testing at 500 or 800°C due to interaction of mobile dislocations and solute atoms.

Key words: metals and alloys, quenching, precipitation, diffusion, metallography.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i05/0673.html

DOI: https://doi.org/10.15407/mfint.43.05.0673

PACS: 61.66.Dk, 61.72.Mm, 62.20.fg, 62.20.M-, 81.40.-z, 81.40.Lm

Citation: Halil Katiksiz and Süleyman Gündüz, Effect of Grain Size and Deformation Temperature on Mechanical Properties and Failure Behaviour of 316L Austenitic Stainless Steel, Metallofiz. Noveishie Tekhnol., 43, No. 5: 673—688 (2021)

  1. R.A. Lula, Stainless Steel (Ohio: American Society for Metals, Metals Park: 1986).
  2. J. C. Lippold and D. J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (New Jersey: John Wiley&Sons Inc.: 2005).
  3. S. Kožuh, M. Gojić, and L. Kosec, Mater. Geoenvironment, 54, No. 3: 331 (2007).
  4. Ren-bo Song, Jian-ying Xiang, and Dong-po Hou, J. Iron Steel Res. Inter., 18, No. 11: 53 (2011). Crossref
  5. A. R. Ericson and R. E. Wiech, Metals Handbook (Materials Park, ASM Federation: 1994).
  6. S. G. Chowdhury, S. Das, and P. K. De, Acta Mater., 53: 3951 (2005). Crossref
  7. N. Solomon and I. Solomon, Revista Metal., 46: 121 (2010). Crossref
  8. M. Naghizadeh and H. Mirzadeh, Metall. Mater. Trans. A, 49A: 2248 (2018). Crossref
  9. G. Cios, T. Tokarski, A. Zywczak, R. Dziurka, M. Stepien, Ł. Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, Metall. Mater. Trans. A, 48A: 4999 (2017). Crossref
  10. S. S. Satheesh Kumar, M. Vasanth, P. Ghosal, Vajinder Singh, and T. Raghu, J. Alloy. Compd., 699: 1036 (2017). Crossref
  11. F. Bottoli, G. Winther, T. L. Christiansen, K. Vinter Dahl, and M. A. J. Somers, Metall. Mater. Trans. A, 47A: 4146 (2016). Crossref
  12. F. Borgioli, E. Galvanetto, and T. Bacci, Vacuum, 127: 51 (2016). Crossref
  13. Y. S. Kim, S. H. Bak, and S. S. Kim, Metall. Mater. Trans. A, 47A: 222 (2016). Crossref
  14. K. Spencer, J. D. Embury, K. T. Conlon, M. Veron, and Y. Brechet, Mater. Sci. Eng. A, 387: 873 (2004). Crossref
  15. D. R. Askeland, The Science and Engineering of Materials (UK, London: Chapman and Hall: 1996).
  16. L. H. De Almeida, P. R. O. Emygdio, and I. Le May, Scr. Metall. Mater., 31: 505 (1994). Crossref
  17. A. Gironès, L. Llanes, M. Anglada, and A. Mateo, Mater. Sci. Eng. A, 367: 322 (2004). Crossref
  18. T. Gladman, The Physical Metallurgy of Microalloyed Steels (UK, London: Institute of Materials: 1997).
  19. F. George and V. Voort, Grain Size Measurement, in: Practical Applications of Quantitative Metallography (PA, Philadelphia: ASTM Special Technical Publication 839: 1994).
  20. G. A. Muhamed, S. Gündüz, M. A. Erden, and D. Taştemur, Metals, 7, No. 362: 2 (2017). Crossref
  21. D. Taştemur and S. Gündüz, Mater. Res. Ibero-American J. Mater., 21, No. 1: 1 (2018). Crossref
  22. G. Ananthakrishna, Phys. Rep., 440: 113 (2007). Crossref
  23. C. Gupta, J. K. Chakravartty, and S. Banerjee, Int. J. Metall. Eng., 2, No. 2: 142 (2013). Crossref
  24. T. Doğan and S. Gündüz, 2nd International Turkish World Engineering and Science Congress (November 7-10, Turkey, 2010).
  25. X. Zhang, N. Hansen, Y. Gao, and X. Huang, Acta Mater., 60: 5933 (2012). Crossref
  26. G. E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill: 1988).
  27. S. Gündüz, Ironmaking and Steelmaking, 29: 341 (2002). Crossref
  28. H. Alihosseini and K. Dehghani, Mater. Sci. Eng. A, 549: 157 (2012). Crossref
  29. C. F. Kuang, J. Li, S. G. Zhang, J. Wang, H. F. Liu, and A. A. Volinsky, Mater. Sci. Eng. A, 613: 178 (2014). Crossref
  30. W. Alshalfan, J. Speer, D. K. Matlock, and K. Findley, Metall. Mater. Trans. A, 37: 207 (2006). Crossref
  31. V. T. L. Buono, B. M. Gonzales, and M. S. Andrade, Scr. Mater., 38: 185 (1997). Crossref
  32. S.-G. Hong and S.-B. Lee, Int. J. Fatigue, 26: 899 (2013). Crossref
  33. Z. Huang, D. Wagner, and C. Bathia, Inter. J. Fatigue, 80: 113 (2015). Crossref
  34. R. Kaçar and S. Gündüz, Kovove Mater., 47: 185 (2009).
  35. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering (New York: John Wiley and Sons: 2011).
  36. E. S. Kayalı and C. Ensari, Metallere Plastik Şekil Verme İlke ve Uygulamaları [Plastic Forming Princibles and Applications for Metals] (İstanbul: İTÜ: 2000) (in Turkish).