Experimental Estimation of Design and Drilling Regime Option Influence on Drilling Tool Dynamics

V. M. Moysyshyn$^{1}$, М. V. Lyskanych$^{1}$, L. V. Borysevych$^{2}$, O. Yu. Vytyaz$^{1}$, I. I. Voznyi$^{1}$

$^{1}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., UA-76019 Ivano-Frankivsk, Ukraine
$^{2}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., UA-76018 Ivano-Frankivsk, Ukraine

Received: 07.03.2021. Download: PDF

Drilling workbench experimental studies are specified an empirical relationship between steel drilling tool oscillations and its design and drilling regime options. The standard deviation of vibration acceleration is specified as the studied oscillation option, i.e. the option workbench’s traverse after the rigidity and damping change device that is a part of drilling assembly. The rigidity and damping coefficient of this device is specified as the design options, and regime options included axial static load and speed of rotation of the steel bit. The constant factors during the experiment are the type and diameter of the steel three-cone bit and the flow rate of the flushing fluid. To obtain empirical dependences, the method of rational planning of experiments is chosen, according to which each combination of variables occurs only once during the research. The planned factor experiment is carried out using as rock sandstone blocks of the Vorotishche series composed of two layers with the stamp hardness of 1440 and 2050 MPa. The general multifactor function is presented as the product of partial dependences on four variables. As established, the probability of existence of all four partial dependences-factors is more than 0.95, which is a satisfactory result of approximation. As also found, an increase in the axial static load and speed of rotation of the steel bit leads to an increase in the vibration acceleration energy, and an increase in the damping coefficient—to the energy reduction. As found, the dependence of the vibration acceleration on the stiffness has a local maximum, which with increasing rock hardness shifts to the range of higher stiffness values. The analysis of the obtained results allowed to provide practical recommendations for reducing the harmful effects of vibrations of the drilling tool and reducing the energy consumption of the drilling process.

Key words: steel cone bit, drilling tool, experimental planning method, variable factor, empirical model, variance and standard deviation, vibration acceleration.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i05/0689.html

DOI: https://doi.org/10.15407/mfint.43.05.0689

PACS: 62.20.-x, 62.20.F-, 62.20.M-, 62.20.Qp, 81.40.Np, 81.70.Bt

Citation: V. M. Moysyshyn, М. V. Lyskanych, L. V. Borysevych, O. Yu. Vytyaz, and I. I. Voznyi, Experimental Estimation of Design and Drilling Regime Option Influence on Drilling Tool Dynamics, Metallofiz. Noveishie Tekhnol., 43, No. 5: 689—712 (2021) (in Ukrainian)


REFERENCES
  1. L. Tang, B. Guo, X. Zhu, C. Shi, and Y. Zhou, J. Low Frequency Noise, Vibration and Active Control, 39, No. 4: 885 (2020). Crossref
  2. Guangjian Dong and Ping Chen, Shock and Vibration, 2016, Article ID 7418635 (2016). Crossref
  3. Xiaohua Zhu and Zhi Zhang, Natural Gas Industry B, 4, No. 5: 374 (2017). Crossref
  4. O. Vlasiy, V. Mazurenko, L. Ropyak, and A. Rogal, East.-Eur. J. Enterprise Technologies, 1, No. 7(85): 25 (2017). Crossref
  5. I. P. Shats'kyi, O. M. Lyskanych, and V. A. Kornuta, Strength Mater., 48, No. 3: 469 (2016). Crossref
  6. O. Onysko, L. Borushchak, V. Kopei, T. Lukan, I. Medvid, and V. Vryukalo, Int. Conf. 'New Technologies, Development and Applications III. NT 2020', Lecture Notes in Networks and Systems, 128: 720 (2020). Crossref
  7. T. Pryhorovska and L. Ropyak, 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), INSPEC Accession Number: 19431197 (2019). Crossref
  8. Y. Wang, C. Qian, L. Kong, Q. Zhou, and J. Gong, Appl. Sci., 10, No. 8: 2669 (2020). Crossref
  9. O. Onysko, V. Kopei, I. Medvid, L. Pituley, and T. Lukan, Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering (Springer, Cham.: 2020). Crossref
  10. O. R. Onysko, V. B. Kopey, and V. G. Panchuk, IOP Conf. Ser.: Mater. Sci. Eng., 749, Accession Number 012007 (2020). Crossref
  11. I. Shatskyi, L. Ropyak, and A. Velychkovych, Eng. Solid Mechan., 8, No. 4: 301 (2020). Crossref
  12. Y. Y. Striletskyi, S. I. Melnychuk , V. M. Gryga, and O. P. Pashkevych, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu [Scientific Bulletin of the National Mining University], No. 3: 19 (2020). Crossref
  13. L. S. Saakiyan, A. P. Efremov, L. Ya. Ropyak, and A.V. Gorbatskii, Soviet Mater. Sci., 23, No. 3: 267 (1987). Crossref
  14. L. S. Saakiyan, A. P. Efremov, and L. Ya. Ropyak, Protection of Metals, 25, No. 2: 185 (1989).
  15. R. S. Yakym and D. Yu. Petryna, Metallofiz. Noveishie Tekhnol., 42, No. 5: 731 (2020). Crossref
  16. L. Ya. Ropyak, T. O. Pryhorovska, and K. H. Levchuk, Progress in Physics of Metals, 21, No. 2: 274 (2020). Crossref
  17. T. A. Pryhorovska and S. S. Chaplinskiy, Neftyanoye Khozyaystvo-Oil Industry, No. 1: 38 (2018) (in Russian). Crossref
  18. L. Ropyak, I. Schuliar, and O. Bohachenko, East.-Eur. J. Enterprise Technologies, 1, No. 5(59): 53 (2016) (in Ukrainian). Crossref
  19. J. A. Nietcho, N. Stosic, and A. Kovacevic, Institution of Mechanical Engineers - 7th International Conference on Compressors and Their Systems, 2011: 317 (2011). Crossref
  20. A. Krivosheya, J. Danilchenko, M. Storchak, and S. Pasternak, Mechanisms and Machine Science, 34: 425 (2016). Crossref
  21. I. P. Shatskii, J. Appl. Mech. and Techn. Phys., 30, No. 5: 828 (1989). Crossref
  22. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Proceedings of the 11th International Conference on Shell Structures: Theory and Applications, SSTA, 2017, 4: 165 (2018). Crossref
  23. L. Ropyak and V. Ostapovych, East.-Eur. J. Enterprise Technologies, 2, No. 5(80): 50 (2016) (in Ukrainian). Crossref
  24. V. B. Tarel'nik, E. V. Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petrol. Eng., 53: 540 (2017). Crossref
  25. V. B. Tarelnyk, O. P. Gaponova, I. V. Konoplianchenko, V. A. Herasymenko, and N. S. Evtushenko, Metallofiz. Noveishie Tekhnol., 40, No. 2: 235 (2018). Crossref
  26. I. P. Shatskyi, L. Ya. Ropyak, and M. V. Makoviichuk, Strength of Materials, 48, No. 5: 726 (2016). Crossref
  27. V.  B. Tarelnyk, O.  P. Gaponova, Ye.  V. Konoplianchenko, V.  S. Martsynkovskyy, N.  V. Tarelnyk, and O.  O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019). Crossref
  28. I. P. Shatskyi, V. V. Perepichka, and L. Y. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian). Crossref
  29. J. Cizek, I. Dlouhy, F. Siska, and K. A. Khor, J. Thermal Spray Technology, 23, No. 8: 1339 (2014). Crossref
  30. L. Ya. Ropyak, V. S. Vytvytskyi, A. S. Velychkovych, T. O. Pryhorovska, and M. V. Shovkoplias, IOP Conf Ser: Mater. Sci. Eng., 1018: 012014 (2021). Crossref
  31. G. Muthukumaran and P. Dinesh Babu, J. Braz. Soc. Mech. Sci. Eng., 43: 103 (2021). Crossref
  32. M. Paschechko, K. Dziedzic, E. Mendyk, and J. Józwik, J. Tribol., 140, No. 2: 021302 (2017). Crossref
  33. M. Pashechko, J. Montusiewicz, K. Dziedzic, and J. Jozwik, Powder Metall. Met. Ceram., 56: 316 (2017). Crossref
  34. Z. A. Duryahina, S. A. Bespalov, V. Ya. Pidkova, and D. Yu. Polockyj, Metallofiz. Noveishie Tekhnol., 33 (Spec. Iss.): 393 (2011).
  35. Z. A. Duriagina, T. M. Kovbasyuk, and S.  A. Bespalov, Usp. Fiz. Met., 17, No. 1: 29 (2016) (in Ukrainian). Crossref
  36. A. Ostapovets, P. Molnár, and A. Jäger, J. Mater. Sci., 48, No. 5: 2123 (2013). Crossref
  37. L. Yu. Kozak, Mater. Sci., 35, No. 1: 132 (1999). Crossref
  38. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003).
  39. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  40. K. H. Levchuk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021) (in Ukrainian). Crossref
  41. J. Grydzhuk, I. Chudyk, A. Velychkovych, and A. Andrusyak, East.-Eur. J. Enterprise Technologies, 1, No. 7(97): 6 (2019). Crossref
  42. T. Pryhorovska, Engineering Solid Mechanics, 6, No. 4: 315 (2018). Crossref
  43. V. Moisyshyn, I. Voyevidko, and V. Tokaruk, Mining of Mineral Deposits, 14, No. 3: 128 (2020). Crossref
  44. N. Volchenko, A. Volchenko, D. Volchenko, P. Poliakov, V. Malyk, D. Zhuravliov, V. Vytvytskyi, and P. Krasin, East.-Eur. J. Enterprise Technologies, 1, No. 5(97): 47 (2019). Crossref
  45. R. M. Tatsiy, O. Y. Pazen, S. Y. Vovk, L. Y. Ropyak, and T. O. Pryhorovska, J. the Serbian Society for Computational Mechanics, 13, No. 2: 36 (2019). Crossref
  46. R. M. Tatsii, and O. Y. Pazen, J. Eng. Phys. Thermophysics, 91, No. 6: 1373 (2018). Crossref
  47. O. Vytyaz,. I. Chudyk, and V. Mykhailiuk, New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 591 (2015). Crossref
  48. D. A. Panevnik and A. S. Velichkovich, Neftyanoe Khozyaystvo-Oil Industry, 2017, No.1: 70 (2017).
  49. M. Dutkiewicz, I. Gołębiowska, I. Shatskyi, V. Shopa, and A. Velychkovych, MATEC Web Conf., 178: 06010 (2018). Crossref
  50. A. S. Velichkovich, Chemical and Petroleum Engineering, 43, Nos. 7-8: 458 (2007). Crossref
  51. I. Shatskyi, I. Popadyuk, and A. Velychkovych, Springer Proceedings in Mathematics and Statistics, 249: 343 (2018). Crossref
  52. V. Moisyshyn, and K. Levchuk, Mining of Mineral Deposits, 10, No. 3: 65 (2016). Crossref
  53. K. G. Levchuk, Metallofiz. Noveishie Tekhnol., 40, No. 5: 701 (2018) (in Ukrainian). Crossref
  54. V. Moisyshyn, and K. Levchuk, Oil and Gas Science and Technology, 72, No. 5, Article Number 27 (2017). Crossref
  55. V. Falshtynskyi, P. Saik, V. Lozynskyi, R. Dychkovskyi, and M. Petlovanyi, Mining of Mineral Deposits, 12: 68 (2018). Crossref
  56. V. S. Falshtynskyi, R. O. Dychkovskyi, V. G. Lozynskyi, and P. B. Saik, J. Sustainable Mining, 12, No. 3: 8 (2013). Crossref
  57. S. Ilin, L. Adorska, V. Samusia, D. Kolosov, and, I. Ilina, E3S Web of Conf., 109, No. 00030. (2019). Crossref
  58. I. Kessai, S. Benammar, M. Z. Doghmane, and K. F. Tee, Appl. Sci., 10, No. 18: 6523 (2020). Crossref
  59. K. G. Levchuk, SOCAR Proceedings, No. 2: 23 (2017) (in Russian). Crossref
  60. V. M. Moisyshyn, M. V. Lyskanych, L. V. Borysevych, N. B. Kolych, and R. A. Zhovniruk, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1087 (2019) (in Ukrainian). Crossref
  61. E. I. Kryzhanivs'kyi, V. P. Rudko, and I. P. Shats'kyi, Mater. Sci., 40, No. 4: 547 (2004). Crossref
  62. I. P. Shats'kyi and A. B. Struk, Strength of Materials, 41, No. 5: 548 (2009). Crossref
  63. A. S. Velychkovych, A. V. Andrusyak, T. O. Pryhorovska, and L. Y. Ropyak, Oil and Gas Science and Technology, 74, Article Number 2019039 (2019). Crossref
  64. I. I. Vytvytskyi, M. V. Seniushkovych, and I. P. Shatskyi, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu [Scientific Bulletin of the National Mining University], No. 5: 29 (2017).
  65. I. Shatskyi, I. Vytvytskyi, M. Seniushkovych, and A. Velychkovych, IOP Conf. Series: Materials Science and Engineering, 564: 012073 (2019). Crossref
  66. I. Shatskyi, A. Velychkovych, I. Vytvytskyi, M. Seniushkovych, Eng. Solid Mechan., 7: 355 (2019). Crossref
  67. I. P. Shatskii and V. V. Perepichka, J. Appl. Mech. Techn. Phys., 54, No. 6: 1016 (2013). Crossref
  68. K. G. Levchuk, V. M. Moisyshyn, and I. V. Tsidylo, Metallofiz. Noveishie Tekhnol., 38, No. 12: 1655 (2016) (in Ukrainian). Crossref
  69. I. Shatskyi and V. Perepichka, Dynamical Systems in Applications. DSTA 2017 (Eds: J. Awrejcewicz), 249: 335 (2018). Crossref
  70. I. P. Shats'kyi, and M. V. Makoviichuk, Mater. Sci., 41, No. 4: 486 (2005). Crossref
  71. I. P. Shats'kyi, M. V Makoviichuk, and A. B. Shcherbii, J. Math. Sci., 238, No. 2: 165 (2019). Crossref
  72. S. Fintová, M. Arzaghi, I. Kuběna, L. Kunz, and C. Sarrazin-Baudoux, Int. J. Fatigue, 98: 187 (2017). Crossref
  73. A. S. Velichkovich, I. I. Popadyuk and V. M. Shopa, Chemical and Petroleum Engineering, 46, Nos. 9-10: 518 (2011). Crossref
  74. Liu Yongwang, Guan Zhichuan, Zhang Hongning, and Zhang Bo, Shock and Vibration, 2016: 1 (2016). Crossref
  75. A. Velychkovych, I. Petryk, and L. Ropyak, Shock and Vibration, 2020, Article ID 3292713 (2020). Crossref
  76. V. M. Shopa, I. P. Shatskii, and I. I. Popadyuk, Soviet Engineering Research, 9, No. 3: 42 (1989).
  77. X. Yuan, T. Tian, H. Ling, T. Qiu, and H. He, Shock and Vibration, 2019, article ID 1498962 (2019). Crossref
  78. A. S. Velichkovich and S. V. Velichkovich, Chemical and Petroleum Engineering, 37, Nos. 3-4: 213 (2001). Crossref
  79. T. G. M. Vromen, Control of Stick-Slip Vibrations in Drilling Systems (Eindhoven: Technische Universiteit Eindhoven: 2015).
  80. A. A. Bedzir, I. P. Shatskii, and V. M. Shopa, Int. Appl. Mech., 31, No. 5: 351 (1995). Crossref
  81. S. V. Velichkovich, I. I. Popadyuk, I. P. Shatskii, and V. M. Shopa, Strength of Materials, 23, No. 3: 279 (1991). Crossref
  82. I. Yo. Popadyuk, I. P. Shats'kyi, V. M. Shopa, and A. S. Velychkovych, J. Math. Sci., 215, No. 2: 243 (2016). Crossref
  83. V. M. Moisyshyn, B. D. Borysevych, Yu. L. Havryliv, and S. A. Zinchenko, Stiykist i Kolyvannya Burylnoyi Kolony (Ivano-Frankivsk: Lileya-NV: 2013) (in Ukrainian).
  84. V. M. Moisyshyn and O. O. Slabyi, Metallofiz. Noveishie Tekhnol., 40, No. 4: 541 (2018). Crossref
  85. Quanta Zhu, Zongming Zou, Bing Huang, Linhu Ma and Jiaxiang Xia, Natural Gas Industry B, 4, No. 2: 73 (2017). Crossref
  86. B. D. Borysevych, V. M. Moisyshyn, and R. B. Shcherbii, Rozvidka ta Rozrobka Naftovykh ta Hazovykh Rodovyshch, No. 3(32): 23 (2009) (in Ukrainian).
  87. A. G. Belov, Comput. Math. Model., 29: 30 (2018). Crossref
  88. M. M. Protodyakonov and R. I. Teder, Metodika Ratsionalnogo Planirovaniya Eksperimenta (Moscow: Nauka: 1970) (in Russian).