Formation and Physical Properties of (CrCoNiFeTi)C Coatings

A. S. Kornyushchenko, V. I. Perekrestov, Yu. O. Kosminska, A. S. Domnyk

Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 10.04.2019; final version - 05.03.2021. Download: PDF

A new technology of (CrCoNiFeTi)C system coatings formation with using ion sputtering of a rod consisting of disks made of corresponding metals and carbon is proposed. The coating elemental composition is in good agreement with metals and carbon distribution along the sputtered rod. As established using scanning, transmission electron microscopy and energy-dispersive elemental analysis, the coatings consist of fine polycrystals with grains’ sizes of few nanometers. An increase in carbon concentration from 14 to 48 at.% leads to titanium carbidization and to decreasing in the roughness of coatings surface. As a result, the coatings microhardness increases from 7 to 27 GPa.

Key words: high-entropy alloys, ion sputtering, mechanical properties, structure formation mechanisms.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i06/0725.html

DOI: https://doi.org/10.15407/mfint.43.06.0725

PACS: 68.35.bd, 68.35.bg, 68.47.Gh, 68.55.-a, 68.55.J-, 81.15.Jj

Citation: A. S. Kornyushchenko, V. I. Perekrestov, Yu. O. Kosminska, and A. S. Domnyk, Formation and Physical Properties of (CrCoNiFeTi)C Coatings, Metallofiz. Noveishie Tekhnol., 43, No. 6: 725—740 (2021) (in Ukrainian)


REFERENCES
  1. B. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, High-Entropy Alloys (Elsevier: 2019), p. 165. Crossref
  2. Sh. Guo and C. T. Liu, Prog. Natural Sci. Mater. Int., 21: 433 (2011). Crossref
  3. I. N. Torianik, V. M. Beresnev, U. S. Nemchenko, D. A. Kolesnikov, P. V. Turbine, S. S. Grunkin, E. V. Bernesneva, and V. V. Ganenko, Fizicheskaya Inzheneriya Poverkhnosti, 11: 420 (2013) (in Russian).
  4. X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, and P. Bai, J. Alloys Compd. 788: 485 (2019). Crossref
  5. W. Wang, W. Qi, L. Xie, X. Yang, J. Li, and Y. Zhang, Materials, 12: 694 (2019). Crossref
  6. P. Malinovskis, S. Fritze, L. Riekehr, L. von Fieandt, J. Cedervall, D. Rehnlund, L. Nyholm, E. Lewin, and U. Jansson, Mater. Des., 149: 51 (2018). Crossref
  7. Y.-S. Jhong, Ch.-W. Huang, and S.-J. Lin, Mater. Chem. Phys., 210: 348 (2018). Crossref
  8. Sh. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, and R. Lupoi, J. Mater. Sci. Technol., 35: 1003 (2019). Crossref
  9. X. H. Yan, J. Sh. Li, W. R. Zhang, and Y. Zhang, Materials Chemistry Physics, 210: 12 (2018). Crossref
  10. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017). Crossref
  11. A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, and V. M. Beresnev, Russ. Chem. Rev., 83: 1027 (2014). Crossref
  12. J.-W. Yeh and S.-J. Lin, J. Mater. Res., 33: 3129 (2018). Crossref
  13. E. Abbasi and K. Dehghani. J. Alloys Compd., 783: 292 (2018). Crossref
  14. M. Braic,V. Braic, M. Balaceanu, C. N. Zoita, A. Vladescu, and E. Grigore, Surf. Coat. Technol., 204: 2010 (2010). Crossref
  15. D. A. Golosov, S. N. Melnikov, and A. P. Dostanko, Elektronnaya Obrabotka Materialov, 48: 63 (2012) (in Russian).
  16. V. I. Perekrestov, S. N. Kravchenko, Yu. A. Kosminskaya, and I. N. Kononenko, Metallofiz. Noveishie Tekhnol., 33, No. 2: 203 (2011) (in Russian).
  17. V. I. Perekrestov and S. N. Kravchenko, Instrum. Exp. Tech., 45: 404 (2002). Crossref
  18. R. Glang, Handbook of Thin Film Technology (Eds. L. I. Maissel and R. Glang) (New York: McGraw Hill Hook Company: 1970), vol. 2.
  19. N. A. Azarenkov, A. V. Sobol, V. M. Beresnev, A. D. Pogrebnyak, D. A. Kolesnikov, P. V. Turbin, and I. N. Torianik, Metallofiz. Noveishie Tekhnol., 35, No. 8: 1061 (2013) (in Russian).