Processing math: 100%

Cold Brittleness of Steels under Stress Concentration (Report 1)

Yu. Ya. Meshkov, K. F. Soroka

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.10.2020; final version - 02.04.2021. Download: PDF

The paper presents a phenomenological model of the ductile-to-brittle transition in steels due to the action of low temperatures and stress raisers (SR)—notches, cracks, etc. Regularities of the effect of strength and toughness of steel on the critical temperature of brittleness Tc for specimens with an annular notch in tension or pre-cracked specimens in three-point bending are considered. As shown, the excessive (supercritical) low-temperature hardening of steel, unbalanced with the required margin of its toughness, when real strength of the steel, σ0.2, exceeds critical strength for a given type of SR, σ0.2c, is the reason for brittleness of specimens with SR. Physical essence of the quantity σ0.2c is explained in terms of specific characteristics of the steel resistance to break, Br, reflecting its margin of toughness. Recommendations are formulated for optimising a set of mechanical properties for products such as fastening bolts with SR in the form of a screw thread, to prevent their cold brittleness during low-temperature operation.

Key words: strength, resistance to break, cold brittleness, brittle fracture, stress raiser.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i06/0781.html

DOI: https://doi.org/10.15407/mfint.43.06.0781

PACS: 62.20.fk, 62.20.fq, 62.20.mj, 62.20.mm, 62.20.mt, 81.40.Np

Citation: Yu. Ya. Meshkov and K. F. Soroka, Cold Brittleness of Steels under Stress Concentration (Report 1), Metallofiz. Noveishie Tekhnol., 43, No. 6: 781—796 (2021) (in Ukrainian)


REFERENCES
  1. I. P. Volchok and V. G. Kovbasa, Prochnost' Staley, Rabotayushchikh v Usloviyakh Nizkikh Temperatur [Strength of Steels at Low Temperatures] (Moscow: Metallurgiya: 1988), p. 5 (in Russian).
  2. H. Conrad, J. Iron and Steel Inst., 198, No. 4: 364 (1961).
  3. Yu. V. Mil'man and V. I. Trefilov, O Fizicheskoy Prirode Temperaturnoy Zavisimosti Predela Tekuchesti. Mekhanizm Razrusheniya Metallov [Physical Nature of the Temperature Dependence of Yield Stress. Metal Fracture Mechanism] (Kyiv: Naukova Dumka: 1966), p. 59 (in Russian).
  4. GOST 9454-78. Metally. Metod Ispytaniya na Udarnyy Izgib pri Ponizhennykh, Komnatnoy i Povyshennykh Temperaturakh [Metals. Impact Bending Test Method at Low, Room and Elevated Temperatures] (Moscow: Izdatel'stvo Standartov: 1978) (in Russian).
  5. V. M. Gryshchenko, Yu. Ya. Meshkov, Yu. O. Polushkin, and A. V. Shiyan, Metallofiz. Noveishie Tekhnol., 37, No. 7: 961 (2015) (in Russian). Crossref
  6. Yu. Ya. Meshkov and A. V. Shiyan, Steel Transl., 48: 256 (2018). Crossref
  7. Yu. Ya. Meshkov and A. V. Shiyan, Steel Transl., 50: 192 (2020). Crossref
  8. Yu. Ya. Meshkov and A. V. Shiyan, Steel Transl., 49: 66 (2019). Crossref
  9. P. F. Koshelev and S. E. Belyaev, Prochnost' i Plastichnost' Konstruktsionnykh Materialov pri Nizkikh Temperaturakh [Strength and Plasticity of Structural Materials at Low Temperatures] (Moscow: Mashinostroenie: 1967) (in Russian).
  10. A. V. Shiyan, Fizicheskaya Priroda Lokal'nogo Napryazheniya Khrupkogo Razrusheniya Staley i Svarnykh Shvov [Physical Nature of Local Stress of Brittle Fracture of Steels and Welds] (Thesis of Disser. for PhD Phys.-Math. Sci.) (Kyiv: Pridneprovskaya Gosudarstvennaya Akademiya Stroitel'stva i Arkhitektury: 1990) (in Russian).
  11. V. S. Gnuchev, Problemy Prochnosti, No. 4: 113 (1977) (in Russian).
  12. Yu. Ya. Meshkov and A. V. Shiyan, Steel Transl., 48: 745 (2018). Crossref
  13. A. V. Shiyan and Yu. Ya. Meshkov, Okhrupchivanie Metallicheskikh Splavov v Usloviyakh Kontsentratsii Napryazheniy. Konstruktsionnye Stali i Titanovye Splavy [Embrittlement of Metal Alloys in the Conditions of Stress Concentration. Structural Steel and Titanium Alloys] (Saarbrücken: LAP LAMBERT: 2015) (in Russian).
  14. Yu. Ya. Meshkov and A. V. Shiyan, Metallofiz. Noveishie Tekhnol., 41, No. 6: 775 (2019) (in Russian). Crossref