Combined Electrospark Running-in Coatings of Bronze Parts. Part 2. Distribution of Elements in a Surface Layer

O. P. Gaponova$^{1}$, V. B. Tarelnyk$^{2}$, V. S. Martsynkovskyy$^{2}$, Ie. V. Konoplianchenko$^{2}$, V. I. Melnyk$^{3}$, V. M. Vlasovets$^{3}$, N. V. Tarelnyk$^{2}$, V. O. Gerasimenko$^{2}$, S. G. Bondarev$^{2}$, A. B. Batalova$^{2}$, G. V. Kirik$^{2}$, A. D. Polyvanyi$^{2}$, Yu. I. Semirnenko$^{2}$, O. V. Ryasnaya$^{2}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{3}$Kharkiv Petro Vasylenko National Technical University of Agriculture, 44 Alchevskykh Str., UA-61002 Kharkiv, Ukraine

Received: 04.03.2021; final version - 28.05.2021. Download: PDF

In the article, the results of a local X-ray microspectral analysis of running-in sulphide combined electrospark coatings (CECs) of bronze parts are presented. The coatings, obtained in the sequences S + Ag $\to$ Pb $\to$ S + Ag and S + Ag $\to$ Sn $\to$ S + Ag, are investigated. As established, the CECs are characterized by the presence of metal elements consisted in the electrode-tools (Ag, Pb, and Sn). In coatings that include lead, with an increase in the discharge energy upon alloying with both silver and lead, the diffusion zone of sulphur increases up to 90, 135, and 200 $\mu$m, respectively. Sulphur is distributed unevenly along the layer depth and its concentration is 1.59–3.3%. When a CEC is formed on a sample coated as S + Ag $\to$ Pb $\to$ S + Ag, its thickness reaches 700 $\mu$m. Sulphur is found on the surface and in a depth of up to 50 $\mu$m, as well as in the transition zone at a distance of $\cong$650 microns from the surface. With an increase in the discharge energy, in the samples coated as S + Ag $\to$ Sn $\to$ S + Ag, the thickness of the applied CEC reaches 1.05 and 1.310 mm. Sulphur is found on the surface, its diffusion zone stretches for 200 $\mu$m from the surface, and in the transition zone—for $\cong$100 $\mu$m.

Key words: bronze specimen, running-in coating, combined electrospark coatings, sulphuring, distribution of elements, surface layer.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i09/1155.html

DOI: https://doi.org/10.15407/mfint.43.09.1155

PACS: 61.72.S-, 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Rs

Citation: O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Ie. V. Konoplianchenko, V. I. Melnyk, V. M. Vlasovets, N. V. Tarelnyk, V. O. Gerasimenko, S. G. Bondarev, A. B. Batalova, G. V. Kirik, A. D. Polyvanyi, Yu. I. Semirnenko, and O. V. Ryasnaya, Combined Electrospark Running-in Coatings of Bronze Parts. Part 2. Distribution of Elements in a Surface Layer, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1155—1166 (2021) (in Ukrainian)


REFERENCES
  1. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Ie. V. Konoplianchenko, V. I. Melnyk, V. M. Vlasovets, O. A. Sarzhanov, N. V. Tarelnyk, M. O. Mikulina, A. D. Polyvanyi, G. V. Kirik, and A. B. Batalova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1125 (2021) (in Ukrainian). Crossref
  2. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conference Series: Materials Science and Engineering (August 30, 2017, Ukraine): 233 (1): 012049 (2017). Crossref
  3. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019) (in Ukrainian). Crossref
  4. Dzh. Gouldsteyn, D. N'yuberi, and P. Echlin, Rastrovaya Elektronnaya Mikroskopiya i Rentgenovskiy Mikroanaliz (Moscow: Mir: 1984) (in Russian).
  5. Scanning Microscopy for Nanotechnology. Techniques and Applications (Eds: Weilie Zhou and Zhong Lin Wang) (Springer: 2006).