High-Resolution X-Ray Diffractometry of Crystalline Compounds with Developed Dislocation Structure

I. M. Fodchuk$^{1}$, A. R. Kuzmin$^{1}$, I. I. Gutsuliak$^{1}$, M. S. Solodkyi$^{1}$, O. L. Maslyanchuk$^{1}$, Yu. T. Roman$^{1}$, V. P. Kladko$^{2}$, O. Yo. Gudymenko$^{2}$, V. B. Molodkin$^{3}$, V. V. Lizunov$^{3}$

$^{1}$Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine
$^{2}$V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 16.06.2021. Download: PDF

Structural defects of crystalline compounds affect the performance of devices based on such materials. A dislocation structure simulation method for crystalline compounds with intermediate values of dislocation densities is proposed (∼10$^{5}$–10$^{6}$ cm$^{−2}$). The influence of various defects on shape of diffuse and coherent components of intensity distributions of X-ray scattering is shown. Probable dislocation reactions are considered at block boundaries and inside of crystals. Possible dislocation system as the set of complete 60°-dislocations and partial dislocations is investigated based on Krivoglaz kinematic theory with use of Monte Carlo method.

Key words: crystalline compounds, high-resolution X-ray diffractometry, defect structure, Monte Carlo method, rocking curves, reciprocal space maps.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i10/1289.html

DOI: https://doi.org/10.15407/mfint.43.10.1289

PACS: 07.85.-m, 61.05.cc, 61.72.Lk, 61.72.Mm

Citation: I. M. Fodchuk, A. R. Kuzmin, I. I. Gutsuliak, M. S. Solodkyi, O. L. Maslyanchuk, Yu. T. Roman, V. P. Kladko, O. Yo. Gudymenko, V. B. Molodkin, and V. V. Lizunov, High-Resolution X-Ray Diffractometry of Crystalline Compounds with Developed Dislocation Structure, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1289—1304 (2021) (in Ukrainian)

  1. T. Hondoh, Crystals, 9, No. 8: 386 (2019). Crossref
  2. J. Weertman, Phys. Rev., 107, No. 5: 1259 (1957). Crossref
  3. X. Wu, Solar Energy, 77, No. 6: 803 (2004). Crossref
  4. Y. Eisen, A. Shor, and I. Mardor, Nucl. Instrum. Methods A, 428, No. 1: 158 (1999). Crossref
  5. O. A. Matveev and A. I. Terent'ev, Fizika Tekhnika Poluprovodnikov, 32, No. 2: 159 (1998) (in Russian).
  6. A. Orlová and B. Sieber, Acta Metal., 32, No. 7: 1045 (1984). Crossref
  7. M. Azoulay, A. Raizman, G. Gafni, and M. Roth, J. Crystal Growth, 101, Iss. 1-4: 256 (1990). Crossref
  8. M. D. Borcha, M. S. Solodkyi, S. V. Balovsyak, V. M. Tkach, I. I. Hutsuliak, A. R. Kuzmin, O. O. Tkach, V. P. Kladko, O. Yo. Gudymenko, O. I. Liubchenko, and Z. Świątek, Semiconductor Physics, Quantum Electronics and Optoelectronics, 22, No. 4: 381 (2019). Crossref
  9. I. M. Fodchuk, V. V. Dovganiuk, I. I. Gutsuliak, I. P. Yaremiy, A. Y. Bonchyk, G. V. Savytsky, I. M. Syvorotka, and O. G. Skakunova, Metallofiz. Noveishie Tekhnol., 35, No. 9: 1209 (2013).
  10. I. M. Fodchuk, I. I. Gutsuliak, R. A. Zaplitnyy, I. P. Yaremiy, A. Y. Bonchyk, and I. I. Syvorotka, Metallofiz. Noveishie Tekhnol., 35, No. 7: 933 (2013).
  11. K. Lischka, E. J. Fantner, T. W. Ryan, and H. Sitter, Appl. Phys. Lett., 55: 1309 (1989). Crossref
  12. M. Polat, O. Ari, O. Öztürk, and Yu. Selamet, Mater. Res. Express., 4: 035904 (2017). Crossref
  13. D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (CRC Press: 1998). Crossref
  14. V. V. Brus, O. L. Maslyanchuk, M. M. Solovan, P. D. Maryanchuk, I. Fodchuk, V. A. Gnatyuk, N. D. Vakhnyak, S. V. Melnychuk, and T. Aoki, Scientific Reports, 9, Article number: 1065 (2019). Crossref
  15. O. Maslyanchuk, M. Solovan, V. Brus, P. Maryanchuk, E. Maistruk, I. Fodchuk, and V. Gnatyuk, Nucl. Instrum. Methods Phys. Res. A, 988: 164920 (2021). Crossref
  16. O. Maslyanchuk, I. Fodchuk, T. Mykytyuk, A. Kuzmin, I. Hutsuliak, and T. Aoki, IEEE Nuclear Science Symposium and Medical Imaging Conference: 159071 (2019). Crossref
  17. O. L. Maslyanchuk, M. M. Solovan, V. V. Brus, V. V. Kulchynsky, P. D. Maryanchuk, I. M. Fodchuk, V. A. Gnatyuk, T. Aoki, C. Potiriadis, and Y. Kaissas, IEEE Transactions on Nuclear Science, 64: 1168 (2017). Crossref
  18. C. Schumacher, A. S. Bader, T. Schallenberg, N. Schwarz, W. Faschinger, and L. W. Molenkamp, J. Appl. Phys., 95, No. 10: 5494 (2004). Crossref
  19. H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, and R. Ohno, IEEE Trans. Nucl. Sci., 56, No. 4: 1717 (2009). Crossref
  20. H. Shiraki, M. Funaki, Y. Ando, S. Kominami, K. Amemiya, and R. Ohno, IEEE Trans. Nucl. Sci., 57, No. 1: 395 (2010). Crossref
  21. P. A. Pramod, Yashodhan Hatwalne, and N. V. Madhusudana, Liquid Crystals, 28, No. 4: 765 (2001). Crossref
  22. X. Chut, and B. K. Tanner, Semicond. Sci. Tech., 2, No. 12: 765 (1987). Crossref
  23. P. B. Hirt, Mozaicheskaya Struktura [Mosaic structure] (Moscow: Mir: 1960) (in Russian).
  24. E. Schafler, M. Zehetbauer, and T. Ungar, Materials Science and Engineering A, 319-321: 220 (2001). Crossref
  25. M. G. Hajiabadi, M. Zamanian, and D. Souri, Ceramics Int., 45, No. 11: 14084 (2019). Crossref
  26. S. Takaki, T. Masumura, and T. Tsuchiyama, ISIJ Int., 59, No. 3: 567 (2019). Crossref
  27. I. Booker, L. Rahimzadeh Khoshroo, J. F. Woitok, V. Kaganer, C. Mauder, H. Behmenburg, J. Gruis, M. Heuken, H. Kalisch, and R. H. Jansen, phys. status solidi (c), 7, Nos. 7-8: 1787 (2010). Crossref
  28. A. J. McGibbon, S. J. Pennycook, and J. E. Angelo, Science, 269, No. 5223: 519 (1995). Crossref
  29. F. Székely, I. Groma, and J. Lendvai, Materials Science and Engineering A, 309-310: 352 (2001). Crossref
  30. H.-J. Lee and B. D. Wirth, Phil. Mag., 89, No. 9: 821 (2009). Crossref
  31. V. M. Shcherbak, I. M. Fodchuk, and V. M. Tikhonova, Kristallografiya, 36, No. 6: 1521 (1991) (in Russian).
  32. T. Paulauskas, C. Buurma, E. Colegrove, B. Stafford, Z. Guo, M. K. Y. Chan, C. Sun, M. J. Kim, S. Sivananthan, and R. F. Klie, Acta Cryst. A, 70, No. 6: 524 (2014). Crossref
  33. Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, L. J. Kecskés, and S. N. Mathaudhu, Acta Materialia, 59, Iss. 2: 812 (1963). Crossref
  34. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Springer: Berlin: 1996). Crossref
  35. V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer: Berlin: 1996).
  36. S. I. Olikhovskii, V. B. Molodkin, E. N. Kislovskii, E. G. Len, and E. V. Pervak, phys. status solidi (b), 231, No. 1: 159 (2002). Crossref
  37. S. Takagi, J. Phys. Soc. Jpn., 26, No. 5: 1239 (1969). Crossref
  38. V. M. Kaganer, R. Kohler, M. Schmidbauer, and R. Opitz, Phys. Rev. B, 55, No. 3: 17563 (1997). Crossref
  39. V. M. Kaganer and K. K. Sabelfeld, Phys. Rev. B, 80: 184105 (2009). Crossref
  40. I. Fodchuk, A. Kuzmin, I. Hutsuliak, M. Solodkyi, V. Dovganyuk, O. Maslyanchuk, Yu. Roman, R. Zaplitnyy, O. Gudymenko, V. Kladko, V. Molodkin, and V. Lizunov, Proceedings, Fourteenth Int. Conf. on Correlation Optics (Sept. 16-19, 2019, Chernivtsi, Ukraine) (2020), 11369: 113691H. Crossref
  41. I. Fodchuk, I. Hutsuliak, V. Dovganyuk, O. Sumariuk, O. Gudymenko, V. Kladko, I. Syvorotka, A. Kotsyubynskiy, M. Barchuk, Proceedings, Fourteenth Int. Conf. on Correlation Optics (Sept. 16-19, 2019, Chernivtsi, Ukraine) (2020), 11369: 113691G. Crossref
  42. I. Fodchuk, I. Gutsuliak, V. Dovganiuk, A. Kotsyubynskiy, U. Pietsch, N. Pashniak, O. Bonchyk, I. Syvorotka, and P. Lytvyn, Appl. Opt., 55: B144-B-149 (2016). Crossref
  43. M. Inoue, I. Teramoto, and S. Takayanagi, J. Appl. Phys., 34, No. 2: 404 (1963). Crossref
  44. C. Li, J. Poplawsky, Ye. Wu, A. R. Lupini, A. Mouti, D. N. Leonard, N. Paudel, K. Jones, W. Yin, M. Al-Jassim, Ya. Yan, and S. J. Pennycook, Ultramicroscopy, 134: 113 (2013). Crossref