Synthesis of Composite with the Eutectic Composition of Al–Cu/C System on the Surface of 2024 Aluminium Alloy by High-Frequency Impact Treatment

M. A. Vasylyev$^{1}$, S. M. Voloshko$^{2}$, V. I. Zakiev$^{3}$, A. P. Burmak$^{2}$, Ya. I. Matvienko$^{1}$, A. D. Rud$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine

Received: 21.09.2021. Download: PDF

High-frequency impact treatment (HFIT) of 2024 aluminium alloy with addition of milled for 8 hours eutectic Al–Cu/C powder to the deformation zone is carried out. Structure and mechanical properties of the surface layers of the alloy after HFIT in the air at room temperature for 50 s without and with addition of the powder are studied and compared. As shown, the maximum hardening effect (the increase of microhardness by $\sim$3.5 times) is observed after HFIT of the sample with the powder. According to the results of multi-pass scratch tests, the lowest value of average indenter penetration depth (from 1.2 $\mu$m after the 1$^{\textrm{st}}$ pass to 2.3 $\mu$m after the 8$^{\textrm{th}}$ pass) is observed for the sample after the same treatment. Moreover, the above-mentioned results are also confirmed by three-dimensional surfaces topography. Thus, the highest values of roughness parameters ($R_a$ = 1.31 $\mu$m, $R_z$ = 4.49 $\mu$m) and the percentage increase in the area (by 12.4%) of the surface of the alloy are observed after HFIT with the powder. As shown by means of X-ray diffraction phase analysis, such treatment facilitated the formation of composite on the surface of 2024 aluminium alloy containing metastable Al$_4$Cu$_9$ and stable Al$_2$Cu intermetallic phases. The effect of the powder addition during HFIT on the structure modification and the level of physical-mechanical properties of the alloy is considered.

Key words: high-frequency impact treatment, 2024 aluminium alloy, Al–Cu/C powders, composite, microhardness, surface.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i11/1455.html

DOI: https://doi.org/10.15407/mfint.43.11.1455

PACS: 61.05.cp, 62.20.Qp, 64.60.My, 68.35.Gy, 81.40.Pq, 81.65.-b

Citation: M. A. Vasylyev, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, Ya. I. Matvienko, and A. D. Rud, Synthesis of Composite with the Eutectic Composition of Al–Cu/C System on the Surface of 2024 Aluminium Alloy by High-Frequency Impact Treatment, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1455—1470 (2021) (in Ukrainian)


REFERENCES
  1. J-P. Immarigeon, R. T. Holt, A. K. Koul, L. Zhao, W. Wallace, and J. C. Beddoes, Mater. Charact., 35, No. 1: 41 (1995). Crossref
  2. R. Casati and M. Vedani, Metals, 4, No. 1: 65 (2014). Crossref
  3. I. Borner and J. Eckert, Mater. Sci. Eng. A, 54: 226 (1997).
  4. S. M. Zebarjad and S. A. Sajjadi, Mater. Design., 27: 684 (2006). Crossref
  5. Hartaj Singh, Sarabjit, Nrip Jit, and Anand K. Tyagi, J. Engineering Research and Studies, 2: 72 (2011).
  6. F. Bonollo, A. Moret, S. Gallo, and C. Mus, La Metallurgia Italiana, 6: 49 (2004).
  7. H. A. Kosnikov, V. A. Baranov, S. Yu. Petrovych, and A. V. Kalmykov, Lyteynoe Proyzvodstvo, 2: 4 (2012) (in Russian).
  8. D. W. Wolla, M. J. Davidson, and A. K. Khanra, Mater. Design., 59: 151 (2014). Crossref
  9. K. Kim, D. Kim, K. Park, M. Cho, S. Cho, and H. Kwon, Materials, 12, Iss. 9: 1546 (2019). Crossref
  10. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. O. Demchenkov, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1035 (2019) (in Ukrainian). Crossref
  11. P. Wang, L. Deng, K. P. Prashanth, S. Pauly, J. Eckert, and S. Scudino, J. Alloys Compd., 735: 2263 (2018). Crossref
  12. V. G. Efremenko, Yu. G. Chabak, A. Lekatou, A. E. Karantzalis, K. Shimizu, V. I. Fedun, A. Yu. Azarkhov, and A. V. Efremenko, Surface and Coatings Technology, 304: 293 (2016). Crossref
  13. H. I. Prokopenko, S. M. Voloshko, I. Ye. Kotenko, and A. P. Burmak, Naukovi Visti NTUU 'KPI', No. 3: 42 (2009) (in Ukrainian).
  14. H. Y. Prokopenko, A. L. Berezyna, S. M. Voloshko, Y. E. Kotenko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 32, No. 3: 397 (2010) (in Russian).
  15. S. I. Sydorenko, S. M. Voloshko, I. Ye. Kotenko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1659 (2011) (in Ukrainian).
  16. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Wiley-VCH: 2015), p. 417. Crossref
  17. M. Castillo-Morales, T. P. Berber-Solano, A. Salas-Zamarripa, O. J. Zapata-Hernández, J. Hernández-Sandoval, D. F. Ledezma-Ramírez, J. A. Castillo-Elizondo, and J. A. Aldaco-Castañeda, Int. J. Adv. Manuf. Technol., 108: 157 (2020). Crossref
  18. A. P. Burmak, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, and V. V. Mohylko, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1245 (2020) (in Ukrainian). Crossref
  19. B. M. Mordyuk, S. M. Voloshko, A. P. Burmak, V. V. Mohylko, and M. M. Voron, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1067 (2019) (in Ukrainian). Crossref
  20. B. N. Mordyuk, Y. V. Milman, M. O. Iefimov, and K. E. Grinkevych, J. Manufacturing Technol. Res., 9: 121 (2017).
  21. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and V. V. Mohylko, J. Mater. Eng. Perform., 30: 1780 (2021). Crossref
  22. A. Shafiei-Zarghani, S. F. Kashani-Bozorg, and A. Zarei-Hanzaki, Mater. Sci. Eng. A, 500: 84 (2009). Crossref
  23. B. Zahmatkesh and M. H. Enayati, Mater. Sci. Eng. A, 527: 6734 (2010). Crossref
  24. R. S. Mishra, Z. Y. Ma, and I. Charit, Mater. Sci. Eng. A, 341: 307 (2003). Crossref
  25. C. Carreno-Gallardo, I. Estrada-Guel, M. A. Neri, and E. Rocha-Rangel, J. Alloys Compd., 483: 173 (2009). Crossref
  26. A. Daoud, Mater. Lett., 58: 3206 (2004). Crossref
  27. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. A. Demchenkov, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1035 (2019) (in Ukrainian). Crossref
  28. S. R. Ignatovich, I. M. Zakiev, and D. I. Borisov, Strength Mater, 40: 334 (2008). Crossref
  29. I. Zakiev and E. Aznakayev, JALA-Journal of the Association for Laboratory Automation, 7, No. 5: 44 (2002). Crossref
  30. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Proc. SPIE 5959, Medical Imaging (Congress on Optics and Optoelectronics) (23 September 2005) (Poland, Warsaw: 2005), vol. 595916. Crossref
  31. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, O. Yu Popov, S. A. Demchenkov, and O. M. Fesenko, Materials Chemistry and Physics, 254: 123437 (2020). Crossref
  32. Ya. I. Matvienko, A. D. Rud, N. D. Rud, O. M. Fesenko, A. D. Yaremkevich, and V. V. Trachevski, Appl. Nanosci., (2021). Crossref
  33. R. Besson, M.-N. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel, and A. Legrisa, Acta Mater., 87: 216 (2015). Crossref
  34. F. Li, K. N. Ishihara, and P. H. Shingu, Metall. Mater. Trans. A, 22: 2849 (1991). Crossref
  35. M. Storchak, I. Zakiev, and L. Träris, J. Mech. Sci. Technol., 32: 315 (2018). Crossref
  36. O. B. Zgalat-Lozynskyy, O. O. Matviichuk, O. I. Tolochyn, O. V. Ievdokymova, N. O. Zgalat-Lozynska, and V. I. Zakiev, Powder Metall. Met. Ceram., 59: 515 (2021). Crossref
  37. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and V. V. Mohylko, J. Mater. Eng. Performance, 30: 1780 (2021). Crossref
  38. V. A. Mechnik, N. A. Bondarenko, V. M. Kolodnitskyi, V. I. Zakiev, I. M. Zakiev, S. R. Ignatovich, S. N. Dub, and N. O. Kuzin, Powder Metall. Met. Ceram., 58, Nos. 11-12: 679 (2020). Crossref