Detecting Helical Andreev Edge States by Shot-Noise Measurements

E. S. Zhitlukhina$^{1,2}$, Paul Seidel$^{3}$

$^{1}$Donetsk Institute for Physics and Engineering Named after O. O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine
$^{2}$Vasyl’ Stus Donetsk National University, 21 600-richchya Str., UA-21021 Vinnytsia, Ukraine
$^{3}$Institute of Solid State Physics, Friedrich Schiller University Jena, 3 Helmholtzweg, DE-07743 Jena, Germany

Received: 08.12.2021. Download: PDF

It has been theoretically argued that a combination of two electronic techniques, measurements of conductivity and shot noise spectra, can be an effective method for detecting helical Andreev edge states in quantum coherent conductors. To implement this methodology in practice, we propose an interferometric phase-sensitive configuration consisting of two independent scanning probe tips, normal and superconducting, and show that the corresponding edge current is strongly dependent on the applied magnetic field.

Key words: helical Andreev edge currents, two-probe scanning setup, superconducting tip, electronic shot-noise spectra.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i03/0289.html

DOI: https://doi.org/10.15407/mfint.44.03.0289

PACS: 68.47.De, 73.63.-b, 73.63.Rt, 74.45.+c

Citation: E. S. Zhitlukhina and Paul Seidel, Detecting Helical Andreev Edge States by Shot-Noise Measurements, Metallofiz. Noveishie Tekhnol., 44, No. 3: 289—296 (2022)


REFERENCES
  1. S. M. Girvin and K. Yang, Modern Condensed Matter Physics (Cambridge University Press: 2019). Crossref
  2. M. Belogolovskii, E. Zhitlukhina, and P. Seidel, Low Temp. Phys., 47, No. 12: 996 (2021). Crossref
  3. S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett., 121, No. 13: 136802 (2018). Crossref
  4. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Phys. Rev. X, 8, No. 3: 031079 (2018). Crossref
  5. C. Wang and X. R. Wang, Hermitian Chiral Boundary States in Non-Hermitian Topological Insulators.
  6. Ya. M. Blanter and M. Büttiker, Phys. Rep., 336, Nos. 1-2: 1 (2000). Crossref
  7. M. Herz, S. Bouvron, E. Cavar, M. Fonin, W. Belzig, and E. Scheer, Nanoscale, 5, No. 20: 9978 (2013). Crossref
  8. L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett., 79, No. 13: 2526 (1997). Crossref
  9. E. Zhitlukhina, I. Devyatov, O. Egorov, M. Belogolovskii, and P. Seidel, Nanoscale Res. Lett., 11, No. 1: 58 (2016). Crossref
  10. E. Zhitlukhina, M. Belogolovskii, and P. Seidel, Appl. Nanosci., 12: 377 (2022). Crossref
  11. M. R. Sahu, A. K. Paul, J. Sutradhar, K. Watanabe, T. Taniguchi, V. Singh, S. Mukerjee, S. Banerjee, and A. Das, Phys. Rev. B, 104, No. 8: L081404 (2021). Crossref
  12. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature, 389, No. 6647: 162 (1997). Crossref
  13. M. Kumar, O. Tal, R. H. M. Smit, A. Smogunov, E. Tosatti, and J. M. Van Ruitenbeek, Phys. Rev. B, 88, No. 24: 245431 (2013). Crossref
  14. A. Burtzlaf, A. Weismann, M. Brandbyge, and R. Berndt, Phys. Rev. Lett., 114, No. 1: 016602 (2015). Crossref
  15. R. Vardimon, M. Klionsky, and O. Tal, Nano Lett., 15, No. 6: 3894 (2015). Crossref
  16. A. N. Pal, D. Li, S. Sarkar, S. Chakrabarti, A. Vilan, L. Kronik, A. Smogunov, and O. Tal, Nature Commun., 10, No. 1: 5565 (2019). Crossref
  17. O. Zarchin, M. Zaffalon, M. Heiblum, D. Mahalu, and V. Umansky, Phys. Rev. B, 77, No. 24: 241303 (2008). Crossref
  18. M. Kumar, R. Avriller, A. Levy Yeyati, and J. M. van Ruitenbeek, Phys. Rev. Lett., 108, No. 14: 146602 (2012). Crossref
  19. R. Ben-Zvi, R. Vardimon, T. Yelin, and O. Tal, ACS Nano, 7, No. 12: 11147 (2013). Crossref
  20. M. A. Bandres and M. V. Segev, Physics, 11, 96 (2018). Crossref
  21. M. Kolmer, P. Olszowski, R. Zuzak, S. Godlewski, C. Joachim, and M. Szymonski, J. Phys.: Condens. Matter, 29, No. 44: 444004 (2017). Crossref
  22. V. M. Svistunov, A. I. D'yachenko, and M. A. Belogolovskii, J. Low Temp. Phys., 31, Nos. 3-4: 339 (1978). Crossref