Electronic Band Structure of Dirac Materials with Hubbard Interaction

I. M. Karnaukhov, K. H. Levchuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.02.2022. Download: PDF

The behaviour of fermion liquid defined on hexagonal and triangular lattices with short-range repulsion at half filling is studied. In strong coupling limit, the Mott–Hubbard phase state is presented; the main peculiarity of insulator state is a doubled cell of the lattices. In the insulator state at half filling fermions with momenta $k$ and $k + \pi$ are coupled via the effective $\lambda$-field, the gap in the spectrum of quasi-particle excitations opens and the Mott phase transition is occurred at a critical value of the one-site Hubbard repulsion $U_{C}$ ($U_{C}$ = 3.904 and $U_{C}$ = 5.125 are calculated values for hexagonal and triangular lattices, respectively). Depending on the magnitude of the short-range repulsion, the gap in the spectrum and the energy of the ground state are calculated. The pro-posed approach is universal; it is implemented for an arbitrary dimension and symmetry of the lattice for fermions models with short-range repulsion.

Key words: the Mott phase transition, Hubbard interaction, hexagonal and triangular lattices, insulator, phase transition.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i05/0565.html

DOI: https://doi.org/10.15407/mfint.44.05.0565

PACS: 25.75.Nq, 71.27.+a, 71.30.+h, 72.80.Ga, 81.30.Hd

Citation: I. M. Karnaukhov and K. H. Levchuk, Electronic Band Structure of Dirac Materials with Hubbard Interaction, Metallofiz. Noveishie Tekhnol., 44, No. 5: 565—585 (2022) (in Ukrainian)


REFERENCES
  1. Fakher F. Assaad and Igor F. Herbut, Phys. Rev. X, 3, Iss. 3, Article number: 0310102013 (2013). Crossref
  2. Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A. Muramatsu, Nature (London), 464: 847 (2010). Crossref
  3. S. Sorella, Y. Otsuka, and S. Yunoki, Sci. Rep., 2, Article number: S. Sorella, Y. Otsuka, and S. Yunoki, Sci. Rep., 2, Article number: 992 (2012). Crossref
  4. S. Sorella and E. Tosatti, Europhys. Lett., 19, No. 8: 699 (1992). Crossref
  5. T. Paiva, R. T. Scalettar, W. Zheng, R. R. P. Singh, and J. Oitmaa, Phys. Rev. B, 72, Iss. 8: Article number: 085123 (2005). Crossref
  6. Igor F. Herbut and Masaki Oshikawa, Phys. Rev. Lett., 97, Article number: 146401 (2006). Crossref
  7. Lufeng Zhang, Chi Ma, and Tianxing Ma, Phys. Status Solidi, 15, Iss. 9, Article number: 2100287 (2021). Crossref
  8. S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-Sh. Chai, D.-Sh. Shang, Sh.-G. Wang, J. F. Scott, and Young Sun, Nat. Commun., 7, Article number: 10569 (2016). Crossref
  9. I. N. Karnaukhov, Ann. Phys., 433, Article number: 168308 (2020). Crossref
  10. I. N. Karnaukhov, Sci. Rep., 11, Article number: 5842 (2021). Crossref
  11. Ming-Huan Zeng, Tianxing Ma, and Y.-J. Wang, Phys. Rev. B, 105, 035155 (2022). Crossref
  12. D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, Annu. Rev. Condensed Matter Phys., 13, 239 (2022). Crossref
  13. I. N. Karnaukhov, Annals of Physics, 434, 168637 (2021). Crossref
  14. M. Cyrot, J. Phys. (Paris), 33, No. 1: 125 (1972). Crossref
  15. Kuang-Ting Chen and Yu-Ju Chiu, Spinless Fermions with Repulsive Interactions (Cambridge: MIT, 2010).
  16. T. Yoshioka, A. Koga, and N. Kawakami, Phys. Rev. Lett., 103, Article number: 036401 (2009). Crossref
  17. J. Kokalj and R. H. McKenzie, Phys. Rev. Lett., 110, Article number 206402 (2013). Crossref