Modelling and Simulation of the Plastic Flows in Metal

M. O. Kurin, O. O. Horbachov, A. V. Onopchenko, T. V. Loza

National Aerospace University ‘Kharkiv Aviation Institute’, 17 Chkalov Str., UA-61070 Kharkiv, Ukraine

Received: 24.02.2022; final version - 02.05.2022. Download: PDF

One of the most important problems in cutting theory is modelling behaviour of cut material accompanied by significant plastic deformations. Determination the chip patterns formation allows to build a theory of entire complex of processes and phenomena occurring in cutting zone. Various schemes, methods and types of processing define a wide variety of implementation schemes with a wide range of orientation cutting edge relative to velocity vector of main working movement. In this regard, it becomes necessary to analyse basic schemes of metal flow around plate. Combination of various schemes can be used to obtain any processing scheme using the principle of superposition. Before, we have developed a new method constructing velocity fields, which is devoid of drawbacks and contradictions of other methods determining the displacements velocity fields. Thus, it becomes necessary to obtain particle velocity fields for basic schemes using the hyperbola method.

Key words: hyperbola method, plastic deformation, potential flow, velocity fields, vortex flow.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i06/0785.html

DOI: https://doi.org/10.15407/mfint.44.06.0785

PACS: 46.55.+d, 47.10.A-, 81.20.Wk, 81.40.Lm, 81.40.Pq, 83.50.-

Citation: M. O. Kurin, O. O. Horbachov, A. V. Onopchenko, and T. V. Loza, Modelling and Simulation of the Plastic Flows in Metal, Metallofiz. Noveishie Tekhnol., 44, No. 6: 785—806 (2022)


REFERENCES
  1. J. M. Allwood, S. R. Duncan, J. Cao, P. Groche, G. Hirt, B. Kinsey, T. Kuboki, M. Liewald, A. Sterzing, and A. E. Tekkaya, CIRP Annals, 65: 573 (2016). Crossref
  2. A. Topa and Q. H. Shah, Int. J. Manufacturing Engineering, 2014: 385065 (2014). Crossref
  3. E. Ghassemali, X. Song, M. Zarinejad, D. Atsushi, and M. J. Tan, Handbook of Manufacturing Engineering and Technology (Ed. A. Nee) (London: Springer: 2013). Crossref
  4. X. Cui and J. Guo, Int. J. Adv. Manuf. Technol., 96: 4281 (2018). Crossref
  5. G. M. Minquiz, V. Borja, M. López-Parra, A. C. Ramírez-Reivich, L. Ruiz-Huerta, R. C. Ambrosio Lázaro, A. S. Y. Sánchez, H. Vazquez-Leal, M.-E. Pavon-Solana, and J. Flores Méndez, Mathematical Problems in Engineering, 2020: 8718597 (2020). Crossref
  6. M. Sajgalik, A. Czan, M. Drbul, I. Danis, M. Miklos, O. Babik, and R. Joch, Procedia Manufacturing, 14: 51 (2017). Crossref
  7. S. Masoudi, M. J. Esfahani, F. Jafarian, and S. A. Mirsoleimani, Int. J. Precis. Eng. and Manuf.-Green Tech., (2019). Crossref
  8. Y. J. Lee and H. Wang, Mater. Des., 192: 108688 (2020). Crossref
  9. B. Boswell, M. N. Islam, I. J. Davies, and A. Pramanik, Proc. Institution Mech. Engineers, Part B: J. Engineering Manufacture, 231, Iss. 6: 913 (2017). Crossref
  10. C. Baumgart, J. J. Radziwill, Fr. Kuster, and K. Wegener, Procedia CIRP, 58: 517 (2017). Crossref
  11. H. Jamshidi and E. Budak, Procedia CIRP, 77: 299 (2018). Crossref
  12. T. Zaborowski and R. Ochenduszko, Mechanik, 10: 135 (2017).
  13. V. Larshin and N. Lishchenko, Advances in Design, Simulation and Manufacturing (Eds. V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 79. Crossref
  14. J. Badger, S. Murphy, and G. E. O'Donnell, Int. J. Machine Tools Manufacture, 125: 11 (2018). Crossref
  15. T. Jin, J. Yi, and P. Li, Int. J. Adv. Manuf. Technol., 88: 2609 (2017). Crossref
  16. Yu. N. Alekseev, Vvedenie v Teoriyu Obrabotki Metallov Davleniem, Prokatkoy i Rezaniem [Introduction to the Theory of Metal Processing via the Pressure, Rolling and Cutting] (Kharkiv: KhGU: 1969) (in Russian).
  17. A. A. Kabatov, Voprosy Proektirovaniya i Proizvodstva Konstruktsiy Letatel'nykh Apparatov, 1: 67 (2013) (in Russian).
  18. A. A. Kabatov, Tenologiya Almaznogo Vyglazhivaniya Detaley Aviatsionnykh Dvigateley i Agregatov [Technology for Diamond Smoothing of Aircraft Engine Parts and Units] (Thesis of Disser. for PhD) (Kharkiv: National Aerospace University 'Kharkiv Aviation Institute': 2014) (in Russian).
  19. J. M. Rodríguez, J. M. Carbonell, and P. Jonsén, Arch. Computation Methods Eng., 27: 387 (2020). Crossref
  20. B. Li, Int. J. Refractory Metals and Hard Materials, 35: 143 (2012). Crossref
  21. T. Mabrouki, C. Courbon, Y. Zhang, J. Rech, D. Nélias, M. Asad, H. Hamdi, S. Belhadi, and F. Salvatore, Comptes Rendus Mécanique, 334, Iss. 4-5: 335 (2016). Crossref
  22. M. O. Kurin, Metallofiz. Noveishie Tekhnol., 42, No. 3: 433 (2020). Crossref
  23. M. O. Kurin, Metallofiz. Noveishie Tekhnol., 40, No. 7: 859 (2018). Crossref
  24. S. M. Nizhnik, Tekhnologiya Shlifovaniya Detaley Aviatsionnykh Dvigateley s Uchetom Uvelicheniya Aktivnoy Poverkhnosti Abrazivnogo Zerna [Grinding Technology of Aviation Engine Parts, Taking into Account the Increase of the Active Surface of Abrasive Grain] (Thesis of Disser. for PhD) (Kharkiv: National Aerospace University 'Kharkiv Aviation Institute': 2018) (in Russian).
  25. B. Wang, Z. Li, M. Zheng, B. Zuo, J. Lin, and C. Zhu, MATEC Web of Conferences, 21: 02005 (2015). Crossref
  26. Grain Flow in Forgings (2021) https://www.milwaukeeforge.com/grain-flow-in-forgings.
  27. Cold Forging vs. Hot Forging-Considerations, Benefits and Drawbacks (2014) https://www.farinia.com/blog/cold-forging-vs-hot-forging-considerations-benefits-and-drawbacks.
  28. N. S. Mahesh, Forging and Extrusion Processes https://asremavad.com/wpcontent/uploads/2019/08/Forging-and-Extrusion-Processes_www.asremavad.com_.pdf.
  29. J. M. Allwood, T. H. C.Childs, A. T. Clare, A. K. M. De Silva, V. Dhokia, I. M. Hutchings, R. K. Leach, D. R. Leal-Ayala, S. Lowth, C. E. Majewski, A. Marzano, J. Mehnen, A. Nassehi, E. Ozturk, M. H. Raffles, R. Roy, I. Shyha, and S. Turner, J. Materials Processing Technology, 229: 729 (2016). Crossref
  30. S. Bolsunovsky, V. Vermel, and G. Gubanov, Procedia CIRP, 8: 235 (2013). Crossref
  31. L. B. Zuev, S. A. Barannikova, and A. G. Lunev, Usp. Fiz. Met., 19, No. 4: 379 (2018) (in Russian). Crossref
  32. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and A. A. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). Crossref
  33. M. O. Kurin, Usp. Fiz. Met., 21, No. 2: 249 (2020). Crossref
  34. T. Sugihara, A. Udupa, and K. Viswanathan, Mater. Trans., 60, Iss. 9: 1436 (2019). Crossref
  35. Okida Junya, Takuichiro Tayama, Yosuke Shimamoto, and Shinya Nakata. SEI Technical Review, 82: 51 (2016).
  36. V. P. Astakhov and S. Shvets, J. Mater. Process. Technol., 146: 193 (2004). Crossref
  37. A. M. Korsunsky and M. Wiercigroch, Int. J. Solids Struct., 47: 1082 (2010). Crossref
  38. M. Lewandowski and S. Stupkiewicz, Int. J. Plasticity, 109: 54 (2018). Crossref
  39. N. Ya. Fabrikant, Aerodinamika [Aerodynamics] (Moscow: Nauka: 1964) (in Russian).
  40. L. G. Loytsyanskiy, Mekhanika Zhidkosti i Gaza [Mechanics of Fluid and Gas] (Moscow: Nauka: 1978) (in Russian).
  41. A. I. Dolmatov, A. A. Kabatov, and M. A. Kurin, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1407 (2013) (in Russian).
  42. M. Dumas, D. Fabre, F. Valiorgue, G. Kermouche, A. Van Robaeys, M. Girinon, A. Brosse, H. Karaouni, and J. Rech, J. Materials Processing Technology, 229: 729 (2021). Crossref
  43. V. Kombarov, V. Sorokin, Y. Tsegelnyk, S. Plankovskyy, Y. Aksonov, and O. Fojtů, Int. J. Mechatronics Applied Mechanics, 9: 1 (2021).
  44. S. Plankovskyy, V. Myntiuk, Y. Tsegelnyk, S. Zadorozhniy, V. Kombarov, Mathematical Modeling and Simulation of Systems (MODS'2020) (Eds. S. Shkarlet, A. Morozov, and A. Palagin,) (Springer: 2021), vol. 1265, p. 82. Crossref