Cross Thermal Conductivity of Aluminium Nitride Films and Thermal Resistance of AlN/Si and AlN/Al Interfaces
Е. M. Rudenko, А. A. Krakovnuy, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, M. A. Skoryk
G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
Received: 09.06.2022; final version - 11.07.2022. Download: PDF
The effective cross-plane thermal conductivity of AlN thin films is studied using 3$\omega$ method. AlN films 1–3 $\mu$m thick are synthesized on single-crystal Si and Al substrates without heating in a hybrid helicon-arc ion-plasma reactor with a helicon plasma source and plasma-arc accelerators combined in one process chamber. The resulting films at the interface with the substrate had a thin layer of disordered AlN about 200 nm thick. A high value of the thermal conductivity coefficient $\lambda_{\perp\textrm{Si}}$ = 82.9 W/(m$\cdot$K) is obtained for films synthesized on Si substrates. On Al substrates, the value $\lambda_{\perp\textrm{Al}}$ = 45.8 W/(m$\cdot$K) is obtained, which is the highest among those known for Al metal substrates, which are widely used for cooling LED devices. The thermal resistance $R_{\textrm{q}}$ of the boundary between AlN films and substrates, which is one of the most important parameters in the creation of a cooling system for electronic devices, is estimated. For the AlN/Si interface, the value $R_{\textrm{q intSi}}$ = 2.3$\cdot10^{-8}$ (m$^{2}\cdot$K)/W is obtained, and for the AlN/Al interface, AlN/Al is $R_{\textrm{q intAl}}$ = 4.3$\cdot10^{-8}$ (m$^{2}\cdot$K/W).
Key words: thermal conductivity, 3$\omega$ method, aluminium nitride, temperature measurement, interface, thin films.
URL: https://mfint.imp.kiev.ua/en/abstract/v44/i08/0989.html
DOI: https://doi.org/10.15407/mfint.44.08.0989
PACS: 44.10.+i, 52.50.Qt, 65.40.-b, 68.55.-a, 68.60.Dv
Citation: Е. M. Rudenko, А. A. Krakovnuy, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, and M. A. Skoryk, Cross Thermal Conductivity of Aluminium Nitride Films and Thermal Resistance of AlN/Si and AlN/Al Interfaces, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989—1002 (2022) (in Ukrainian)