Cross Thermal Conductivity of Aluminium Nitride Films and Thermal Resistance of AlN/Si and AlN/Al Interfaces

Е. M. Rudenko, А. A. Krakovnuy, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, M. A. Skoryka

Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 09.06.2022; окончательный вариант - 11.07.2022. Скачать: PDF

The effective cross-plane thermal conductivity of AlN thin films is studied using 3$\omega$ method. AlN films 1–3 $\mu$m thick are synthesized on single-crystal Si and Al substrates without heating in a hybrid helicon-arc ion-plasma reactor with a helicon plasma source and plasma-arc accelerators combined in one process chamber. The resulting films at the interface with the substrate had a thin layer of disordered AlN about 200 nm thick. A high value of the thermal conductivity coefficient $\lambda_{\perp\textrm{Si}}$ = 82.9 W/(m$\cdot$K) is obtained for films synthesized on Si substrates. On Al substrates, the value $\lambda_{\perp\textrm{Al}}$ = 45.8 W/(m$\cdot$K) is obtained, which is the highest among those known for Al metal substrates, which are widely used for cooling LED devices. The thermal resistance $R_{\textrm{q}}$ of the boundary between AlN films and substrates, which is one of the most important parameters in the creation of a cooling system for electronic devices, is estimated. For the AlN/Si interface, the value $R_{\textrm{q intSi}}$ = 2.3$\cdot10^{-8}$ (m$^{2}\cdot$K)/W is obtained, and for the AlN/Al interface, AlN/Al is $R_{\textrm{q intAl}}$ = 4.3$\cdot10^{-8}$ (m$^{2}\cdot$K/W).

Ключевые слова: thermal conductivity, 3$\omega$ method, aluminium nitride, temperature measurement, interface, thin films.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i08/0989.html

PACS: 44.10.+i, 52.50.Qt, 65.40.-b, 68.55.-a, 68.60.Dv


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, F. Craciun, M. Stölzer, M. Gartner, and M. Dinescu, Appl. Surf. Sci., 186: 507 (2002). Crossref
  2. Y. Zhao, C. Zhu, S. Wang, J. Z. Tian, D. J. Yang, C. K. Chen, H. Cheng, and P. Hing, J. Appl. Phys., 96: 4563 (2004). Crossref
  3. P. K. Kuo, G. W. Auner, and Z. L. Wu, Thin Solid Films, 253: 223 (1994). Crossref
  4. T. S. Pan, Y. Zhang, J. Huang, B. Zeng, D. H. Hong, S. L. Wang, H. Z. Zeng, M. Gao, W. Huang, and Y. Lin, J. Appl. Phys., 112: 044905 (2012). Crossref
  5. S.-M. Lee and D. G. Cahill, J. Appl. Phys., 81: 2590 (1997). Crossref
  6. D. G. Cahill, K. Goodson, and A. Majumdar, J. Heat Transf., 124: 223 (2002). Crossref
  7. S. R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, and J.-K. Kim, Int. J. Thermophys., 27: 896 (2006). Crossref
  8. M. Bogner, G. Benstetter, and Y. Q. Fu, Surf. Coat. Technol., 320: 91 (2017). Crossref
  9. E. M. Rudenko, I. V. Korotash, D. Yu. Polotsky, L. S. Osipov, T. A. Prichna, and A. P. Shapovalov, Metallofiz. Noveishie Tekhnol., 37, No. 4: 499 (2015) (in Russian).
  10. T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum., 72: 2139 (2001). Crossref
  11. D. G. Cahill, Rev. Sci. Instrum., 61: 802 (1990). Crossref
  12. David de Koninck, Thermal Conductivity Measurements Using the 3 Omega Technique: Application to Power Harvesting Microsystems (Montréal: Department of Mechanical Engineering McGill University: 2008), p. 106.
  13. I. Korotash, V. Odinokov, G. Pavlov, D. Polotskii, E. Rudenko, V. Semeniuk, and V. Sologub, Nanoindustry, No. 4: 14 (2010) (in Russian).
  14. Patrick E. Hopkins, ISRN Mechanical Engineering, 2013: 682586 (2013). Crossref
  15. J. Paterson, D. Singhal, D. Tainoff, J. Richard, and O. Bourgeois, J. Appl. Phys., 127: 245105 (2020). Crossref
  16. C. Duquenne, M.-P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, J. Phys. D: Appl. Phys., 45: 015301 (2012). Crossref
  17. E. Swartz and R. Pohl, Appl. Phys. Lett., 51: 2200 (1987). Crossref