Thermal and Ion Treatment Effect on Nanoscale Thin Films Scratch Resistance

V. Yanchuk$^{1}$, I. Kruhlov$^{1}$, V. Zakiev$^{1,2}$, A. Lozova$^{1}$, B. Trembach$^{3}$, A. Orlov$^{1}$, S. Voloshko$^{1}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine
$^{3}$Private Joint Stock Company ‘Novokramatorsky Mashinostroitelny Zavod’, 5 Oleksa Tikhoy Str., UA-84305 Kramatorsk, Ukraine

Received: 28.07.2022; final version - 11.08.2022. Download: PDF

In this study, a microtribological characteristics of Ni(25 nm)/Cu(25 nm)/ Cr(25 nm) three-layer thin films fabricated using DC magnetron sputtering are explored using progressive scratch test. Four various types of thin films are examined and compared: as-deposited film, film after low-energy Ar$^{+}$ ion irradiation, film annealed at 450°С for 15 minutes in vacuum, and film after ion irradiation followed by vacuum annealing. Scratch tests are supplemented by structural (XRD) and chemical (AES) experimental studies. As figured out, the sample after ion irradiation followed by annealing demonstrated the best microtribological and wear resistance characteristics among all studied films. The highest scratch resistance, smooth scratch shape, the lowest value of peak tangential force as well as the absence of side cracks and film delamination are revealed for the sample after irradiation followed by annealing. The likely reasons of this behaviour are discussed.

Key words: thermal and ion treatment, thin films, scratch resistance, microtribological resistance, scratch test.



PACS: 07.10.-h, 68.35.Fx, 68.35.Rh, 68.55.Ln, 81.40.-z

Citation: V. Yanchuk, I. Kruhlov, V. Zakiev, A. Lozova, B. Trembach, A. Orlov, and S. Voloshko, Thermal and Ion Treatment Effect on Nanoscale Thin Films Scratch Resistance, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1275—1292 (2022)

  1. J. M. Martinez-Duart, R. J. Martin-Palma, and F. Aguillo-Rueda, Nanotekhnologii dlya Mikro- i Optoelektroniki [Nanotechnologies for Micro- and Optoelectronics] (Moscow: Tehnosfera: 2007) (in Russian).
  2. B. N. Chapman, J. Vac. Sci. Technol., 11, No. 1: 106 (1974). Crossref
  3. B. S. Yadav, A. C. Badgujar, and S. R. Dhage, Solar Energy, 157: 507 (2017). Crossref
  4. K. L. Mittal, Electrocomponent Sci. Technol., 3: 21 (1976). Crossref
  5. A. Lassnig, B. Putz, S. Hirn, D. M. Többens, C. Mitterer, and M. J. Cordill, Materials and Design, 200: 109451 (2021). Crossref
  6. A. Lazauskas, V. Grigaliūnas, A. Guobienė, M. Andrulevičius, and J. Baltrusaitis, Thin Solid Films, 520: 6328 (2012). Crossref
  7. A. G. Shaucukov, Prikladnaja Fizika, No. 5: 16 (2006) (in Russian).
  8. H. Javed, B. Merle, E. Preiß, R. Hivet, A. Benedetto, and M. Gökena, Surf. Coatings Technol., 289: 69 (2016). Crossref
  9. L. E. Collins, J. G. Perkins, and P. T. Stroud, Thin Solid Films, 4: 4145 (1969). Crossref
  10. P. T. Stroud, Thin Solid Films, 11: 1 (1972). Crossref
  11. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A. J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, Opt. Mater. Express, 5: 176 (2014). Crossref
  12. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, I. O. Kruhlov, and V. I. Zakiev, Surf. Coatings Technol., 361: 413 (2019). Crossref
  13. H. Windischmann, J. Appl. Phys., 62: 1800 (1987). Crossref
  14. K. Zhang, M. Wena, G. Cheng, X. Li, Q. N. Meng, J. S. Lian, and W. T. Zheng, Vacuum, 99: 233 (2014). Crossref
  15. M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17, No. 3: 209 (2016). Crossref
  16. I. O. Kruhlov, I. A. Vladymyrskyi, O. Dubikovskyi, S. I. Sidorenko, T. Ebisu, K. Kato, O. Sakata, T. Ishikawa, Y. Iguchi, G. A. Langer, Z. Erdélyi, and S. M. Voloshko, Mater. Research Express, 6: 126431 (2019). Crossref
  17. G. J. Klingenmaier and M. Dobrash, Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings (Ed. K. L. Mittal) (Philadelphia: ASTM: 1978), p. 369.
  18. E. Darque-Ceretti and E. Felder, Adhesion et Adherence. Sciences et Techniques de L'ingenieur (Paris: CNRS Editions: 2003), p. 246.
  19. A. A. Volinsky, N. R. Moody, and W. W. Gerberich, Acta Mater., 50: 441 (2002). Crossref
  20. I. Kruhlov, A. Orlov, V. Zakiev, I. Zakiev, S. Prikhodko, and S. Voloshko, TMS 2022 151st Annual Meeting Exhibition Supplemental Proceedings (February 27-March 3, 2022) (Anaheim: 2022), p. 431. Crossref
  21. S. V. V. N. Siva Rao, T. Bhavani, S. K. Ghosh, J. D. Barma, and R. K. B. Meitei, Materials Today: Proceedings, 47, Part 11: 3400 (2021). Crossref
  22. M. Storchak, I. Zakiev, V. Zakiev, and A. Manokhin, Measurement, 191: 110745 (2022). Crossref
  23. O. Borrero-López, M. Hoffman, A. Bendavid, and P. J. Martin, Thin Solid Films, 518: 4911 (2010). Crossref
  24. E. Broitman, Tribol. Lett., 65: 23 (2017). Crossref
  25. S. R. Ignatovich, I. M. Zakiev, D. I. Borisov, and V. I. Zakiev, Strength Mater., 38: 428 (2006). Crossref
  26. S. J. Bull, Surf. Coat. Technol., 50, Iss. 1: 25 (1991). Crossref
  27. J. Malzbender, J. M. J. den Toonder, A. R. Balkenende, and G. de With, Mater. Sci. Eng. R, 36, Iss. 2-3: 47 (2002). Crossref
  28. V. Hutsaylyuk, M. Student, V. Posuvailo, O. Student, V. Hvozdets'kyi, P. Maruschak, and V. Zakiev, J. Mater. Res. Technol., 14: 1682 (2021). Crossref
  29. V. A. Mechnik, N. A. Bondarenko, V. M. Kolodnitskyi, V. I. Zakiev, I. M. Zakiev, E. S. Gevorkyan, N. O. Kuzin, O. S. Yakushenko, and I. V. Semak, J. Superhard Mater., 41, No. 1: 43 (2021). Crossref
  30. O. B. Zgalat-Lozynskyy, O. O. Matviichuk, O. I. Tolochyn, O. V. Ievdokymova, N. O. Zgalat-Lozynska, and V. I. Zakiev, Powder Metall. Metal Ceramics, 59: 515 (2021). Crossref
  31. X. Wang, P. Xu, R. Han, J. Ren, L. Li, N. Han, F. Xing, and J. Zhu, Nanotechnol. Rev., 8, No. 1: 628 (2019). Crossref
  32. J. Li and W. Beres, Canadian Metallurgical Quarterly, 46, Iss. 2: 155 (2007). Crossref
  33. M. S. Kabir, P. Munroe, Z. Zhou, and Z. Xie, Wear, 380-381: 163 (2017). Crossref
  34. S. J. Bull and E. G. Berasetegui, Tribology International, 39, Iss. 2: 99 (2006). Crossref
  35. N. Schwarzer, Q.-H. Duong, N. Bierwisch, G. Favaro, M. Fuchs, P. Kempe, B. Widrig, and J. Ramm, Surf. Coat. Technol., 206: Iss. 6: 1327 (2011). Crossref
  36. K. Khojier, H. Savaloni, Z. Ashkabusi, and N. Z. Dehnavi, Applied Surf. Sci., 284: 489 (2013). Crossref
  37. I. Zakiev, M. Storchak, G. A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics Int., 47, Iss. 21: 29638 (2021). Crossref
  38. M. Zawischa, M. M. A. B. M. Supian, S. Makowski, F. Schaller, and V. Weihnacht, Surf. Coat. Technol., 415: 127118 (2021). Crossref
  39. M. Laugier, Thin Solid Films, 76, Iss. 3: 289 (1981). Crossref
  40. Woei-Shyan Lee and Te-Yu Liu, Nanotechnology, 18: 335701 (2007) Crossref
  41. A. M. Kovalchenko, S. Goel, I. M. Zakiev, E. A. Pashchenko, and R. Al-Sayeghe, J. Mater. Res. Technol., 8, Iss. 1: 703 (2019). Crossref
  42. N. Tayebi and A. A. Polycarpou, Microsyst. Technol., 12: 854 (2006). Crossref
  43. B. Stegemann, H. Backhaus, H. Kloss, and E. Santner, Modern Research and Educational Topics in Microscopy (Eds. A. Méndez-Vilas and J. Díaz) (Formatex, Spain: 2007), vol. 1, p. 824.
  44. W. M. Dawson and F. R. Sale, Metall. Trans. A, 8: 15 (1977). Crossref
  45. P. M. Hall and J. M. Morabito, Surf. Sci., 54: 79 (1976). Crossref
  46. S. Lian, A. Fourie, J. Wang, H. C. Swart, and J. J. Terblans, Vacuum, 202: 111206 (2022). Crossref
  47. X. Cen, A. M. Thron, and K. van Benthem, Acta Mater., 140: 149 (2017). Crossref
  48. H. Ryssel and L. Ruge, Ion Implantation (Chichester: John Wiley Sons Ltd., Hoboken: 1986).
  49. M. O. Vasylyev, S. I. Sidorenko, I. O. Kruhlov, and D. I. Trubchaninova, Metallofiz. Noveishie Tekhnol., 42, No. 5: 621 (2020) (in Ukrainian). Crossref
  50. Y. G. Chabak, V. I. Fedun, K. Shimizu, V. G. Efremenko, and V. I. Zurnadzhy, Problems of Atomic Science and Technology, No. 4 (102): 100 (2016).
  51. O. Waseda, R. GA Veiga, J. Morthomas, P. Chantrenne, C. S. Becquart, F. Ribeiro, A. Jelea, H. Goldstein, and M. Perez, Scripta Mater., 129: 16 (2017). Crossref