Processing math: 100%

Variation of the Physical Properties in the Weld Bead of the Submerged Arc Welding of Low-Carbon Alloy Steel

M. Aouragh1, B. Guerira1, L. Touam2, S. Derfouf3

1Mohamed Khider University of Biskra, BP 145RP, 07000 Biskra, Algeria
2Abbes Laghrour University, BP 1252 Road of Batna, 40004 Khenchela, Algeria
3University of Batna 2, 53 Route de Constantine. Fésdis, 05078 Batna, Algeria

Received: 12.12.2022; final version - 12.01.2023. Download: PDF

This paper presents an experimental study, which is performed on weld bead of the gas-tank element made of the low-alloy steel with the following chemical composition (% wt.): (C: 0.20, Si: 0.0079, Mn: 0.778, P: 0.0156, S: 0.058, Cr: 0.021, Al: 0.035, Cu: 0.012, Ni: 0.0075), and 3.3 mm of thick. This manufacturing process ends with a normalized annealing heat treatment at temperature of 920 ± 10°C. The purpose of this work is to study the effect of important parameter—the electrical voltage V. This welding is submerged arc welding under submerged arc-welding particle flux. The principle of the characterization taken into account consists in varying both the electrical voltage V, which is between 31 V and 36 V. As shown, this physical parameter directly influences the carbon content in the weld bead, the structural components and the mechanical properties (σ and HV0.3) of the steel under study.

Key words: gas tanks, submerged arc welding, electric voltage, low-alloy steel, ferrite, pearlite.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i03/0359.html

DOI: https://doi.org/10.15407/mfint.45.03.0359

PACS: 61.82.Bg, 64.70.kd, 81.05.Bx, 81.20.Vj, 81.40.Ef, 81.40.-z

Citation: M. Aouragh, B. Guerira, L. Touam, and S. Derfouf, Variation of the Physical Properties in the Weld Bead of the Submerged Arc Welding of Low-Carbon Alloy Steel, Metallofiz. Noveishie Tekhnol., 45, No. 3: 359—368 (2023)


REFERENCES
  1. R. L. O'brien, Welding Handbook, 11: 191 (1991). Crossref
  2. ASM Handbook (Eds. D. L. Olson, T. A. Siewert, S. Liu, and G. R. Edwards) (American Society for Metals: 1993), vol. 6, p. 202.
  3. The Procedure Handbook of Arc Welding (The Lincoln Electric Co: 1973), p. 1.
  4. R. P. Singh, C. Singh, and A. K. Verma, Mater. Today Proc., 26, Part 2: 1822 (2020). Crossref
  5. M. Sailender, R. Suresh, G. C. M. Reddy, and S. Venkatesh, Measurement, 150: 107084 (2020). Crossref
  6. M. Sailender, G. C. M. Reddy, and S. Venkatesh, European J. Eng. Research Sci., 1, No. 3: 1 (2016). Crossref
  7. B. K. Khamari, S. S. Dash, S. K. Karak, and B. B. Biswal, Ironmaking and Steelmaking, 47, Iss. 8: 844 (2020). Crossref
  8. O. Grong and D. K. Matlock, Int. Metals Rev., 31, No. 1: 28 (1986). Crossref
  9. M. Durand-Charre, La Microstructure des Aciers et des Fontes. Genèse et Interprétation (EDP Sciences: 2012).
  10. M. Sen, M. Mukherjee, S. K. Singh, and T. K. Pal, J. Manufacturing Processes, 31: 424 (2018). Crossref
  11. C. Bonnet, Le Soudage. Métallurgie et Produits (Air Liquide/CTAS: 2001).
  12. Z. Boumerzoug, C. Derfouf, and T. Baudin, Engineering, 2, No. 7: 502 (2010). Crossref
  13. W. M. Jodia, Eng. Sci., 25, No. 4: 1471 (2017).
  14. A. K. Sinha, Ferrous Physical Metallurgy (London: Butterworths: 1989).
  15. S. Zhang and C. Wu, Ferrous Materials (Beijing: Metallurgical Industry Press: 1992).