Variation of the Physical Properties in the Weld Bead of the Submerged Arc Welding of Low-Carbon Alloy Steel

M. Aouragh$^{1}$, B. Guerira$^{1}$, L. Touam$^{2}$, S. Derfouf$^{3}$

$^{1}$Mohamed Khider University of Biskra, BP 145RP, 07000 Biskra, Algeria
$^{2}$Abbes Laghrour University, BP 1252 Road of Batna, 40004 Khenchela, Algeria
$^{3}$University of Batna 2, 53 Route de Constantine. Fésdis, 05078 Batna, Algeria

Received: 12.12.2022; final version - 12.01.2023. Download: PDF

This paper presents an experimental study, which is performed on weld bead of the gas-tank element made of the low-alloy steel with the following chemical composition (% wt.): (C: 0.20, Si: 0.0079, Mn: 0.778, P: 0.0156, S: 0.058, Cr: 0.021, Al: 0.035, Cu: 0.012, Ni: 0.0075), and 3.3 mm of thick. This manufacturing process ends with a normalized annealing heat treatment at temperature of 920 $\pm$ 10°C. The purpose of this work is to study the effect of important parameter—the electrical voltage $V$. This welding is submerged arc welding under submerged arc-welding particle flux. The principle of the characterization taken into account consists in varying both the electrical voltage $V$, which is between 31 V and 36 V. As shown, this physical parameter directly influences the carbon content in the weld bead, the structural components and the mechanical properties ($\sigma$ and $HV_{0.3}$) of the steel under study.

Key words: gas tanks, submerged arc welding, electric voltage, low-alloy steel, ferrite, pearlite.



PACS: 61.82.Bg, 64.70.kd, 81.05.Bx, 81.20.Vj, 81.40.Ef, 81.40.-z

Citation: M. Aouragh, B. Guerira, L. Touam, and S. Derfouf, Variation of the Physical Properties in the Weld Bead of the Submerged Arc Welding of Low-Carbon Alloy Steel, Metallofiz. Noveishie Tekhnol., 45, No. 3: 359—368 (2023)

  1. R. L. O'brien, Welding Handbook, 11: 191 (1991). Crossref
  2. ASM Handbook (Eds. D. L. Olson, T. A. Siewert, S. Liu, and G. R. Edwards) (American Society for Metals: 1993), vol. 6, p. 202.
  3. The Procedure Handbook of Arc Welding (The Lincoln Electric Co: 1973), p. 1.
  4. R. P. Singh, C. Singh, and A. K. Verma, Mater. Today Proc., 26, Part 2: 1822 (2020). Crossref
  5. M. Sailender, R. Suresh, G. C. M. Reddy, and S. Venkatesh, Measurement, 150: 107084 (2020). Crossref
  6. M. Sailender, G. C. M. Reddy, and S. Venkatesh, European J. Eng. Research Sci., 1, No. 3: 1 (2016). Crossref
  7. B. K. Khamari, S. S. Dash, S. K. Karak, and B. B. Biswal, Ironmaking and Steelmaking, 47, Iss. 8: 844 (2020). Crossref
  8. O. Grong and D. K. Matlock, Int. Metals Rev., 31, No. 1: 28 (1986). Crossref
  9. M. Durand-Charre, La Microstructure des Aciers et des Fontes. Genèse et Interprétation (EDP Sciences: 2012).
  10. M. Sen, M. Mukherjee, S. K. Singh, and T. K. Pal, J. Manufacturing Processes, 31: 424 (2018). Crossref
  11. C. Bonnet, Le Soudage. Métallurgie et Produits (Air Liquide/CTAS: 2001).
  12. Z. Boumerzoug, C. Derfouf, and T. Baudin, Engineering, 2, No. 7: 502 (2010). Crossref
  13. W. M. Jodia, Eng. Sci., 25, No. 4: 1471 (2017).
  14. A. K. Sinha, Ferrous Physical Metallurgy (London: Butterworths: 1989).
  15. S. Zhang and C. Wu, Ferrous Materials (Beijing: Metallurgical Industry Press: 1992).