Corrosion Properties Characterization of 06Cr18Ni10Ti, 08Cr18Ni10Ti Steels and 42CrNiMo Alloy under Conditions Simulating Primary Coolant of Pressurized Water Reactor

V. A. Zuyok, R. A. Rud, M. V. Tretyakov, N. V. Rud, Ya. O. Kushtym, V. V. Shtefan

National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received: 02.01.2023; final version - 15.02.2023. Download: PDF

The article presents an analysis of the corrosion properties of structural materials for primary circuit of light-water reactors. Results of autoclave testing of austenitic stainless steels 06Cr18Ni10Ti, 08Cr18Ni10Ti and chromium–nickel alloy 42CrNiMo in a model environment of primary coolant at a temperature of 350°C and a pressure of 16.5 MPa are presented. Corrosion resistance is estimated by the rate of mass change and the appearance of the samples, the microstructure of the oxide films, and the amount of metal that entered into reaction with the corrosion environment. As established, the samples of the 42CrNiMo alloy, in contrast to the Cr18Ni10Тi steel samples, are oxidized with a mass gain of 9 mg/dm$^2$ for 10 000 hours of testing. The mass index of stainless-steels’ corrosion during the same exposure time almost did not change and is of 0–-2 mg/dm$^2$. The reflectivity of the surface of the samples is decreased slightly, the oxide film is firmly attached to the metal substrate; there is no local corrosion or deposits that indicates the high corrosion resistance of the studied materials. The study of the morphology of the oxide-films’ surface reveals that compact pyramidal-shaped microcrystalline precipitates grow during autoclaving. The corrosion products are chemically removed from the surface of the samples to evaluate the corrosion damage of the studied materials. As shown, after 10 000 hours, the corrosion loss of Cr18Ni10Ti grade steels is of 55 mg/dm$^2$, and for 42CrNiMo alloy, it is 5 mg/dm$^2$. As established, the dissolution coefficient of oxide films, that is the ratio of the mass of the oxide film transferred to the corrosion environment to the total mass of oxide formed during oxidation of the material, is almost zero for the 42CrNiMo alloy, while it is of 30% for stainless steels. This indicates that the application of the 42CrNiMo alloy as a reactor-core structural material will allow eliminating significantly such an undesirable phenomenon as the transfer of corrosion products into the circuit and their further activation. The dependence approximating the corrosion kinetics of stainless steels and Cr–Ni alloy is established. At the initial stages of autoclave exposure (up to 1000 hours), mass loss is described by a power law with an index of power of 0.817 and 0.720 for steels 06Cr18Ni10Ti and 08Cr18Ni10Ti, respectively. Moreover, the indices of power are of 0.347 and 0.352 for longer tests. The experimental results of the mass change of the 42CrNiMo-alloy samples obtained over the entire period of testing are described by one law with an index of power of 0.510. Based on the results of the work, the main conclusion is made that the chrome–nickel alloy 42CrNiMo, in contrast to the stainless steels Cr18Ni10Ti, possess a higher corrosion resistance under model conditions of the light-water reactors’ primary coolant. Oxide films growing on 42CrNiMo surface have almost no tendency to dissolve, in contrast to Cr18Ni10Ti steels with the dissolution coefficient of 30%.

Key words: corrosion, water reactor, oxide, autoclave testing, kinetics of corrosion, 42CrNiMo, Cr18Ni10Ti.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i04/0481.html

DOI: https://doi.org/10.15407/mfint.45.04.0481

PACS: 28.41.Qb, 28.52.Fa, 68.35.bd, 82.45.Bb, 88.30.Nn

Citation: V. A. Zuyok, R. A. Rud, M. V. Tretyakov, N. V. Rud, Ya. O. Kushtym, and V. V. Shtefan, Corrosion Properties Characterization of 06Cr18Ni10Ti, 08Cr18Ni10Ti Steels and 42CrNiMo Alloy under Conditions Simulating Primary Coolant of Pressurized Water Reactor, Metallofiz. Noveishie Tekhnol., 45, No. 4: 481—501 (2023)


REFERENCES
  1. V. G. Krickij, Yu. A. Rodionov, I. G. Berezina, E. V. Zelenina, A. V. Gavrilov, A. P. Shukin, A. I. Fedorov, M. G. Shedrin, and A. V. Galanin, Formirovanie i Udalenie Otlozheniy v 1-om Konture AES s VVER [Formation and Removal of Deposits in the 1st Circuit of the VVER Nuclear Power Plant] (Sankt-Peterburg: Beresta: 2011) (in Russian).
  2. P. Cohen, Water Coolant Technology of Power Reactors (Am. Nucl. Soc.: 1980).
  3. Y. Solomon, An Overview of Water Chemistry for Pressurized Water Reactors, Proceedings of Water Chemistry of Nuclear Reactor Systems (Br. Nucl. Energy Soc.: 1978) p. 101. Crossref
  4. B. A. Kalin, Atomnyy Ehkspert, Nos. 2-3 (2019) (in Russian).
  5. K. Fukuya, K. Fujii, H. Nishioka, and Y. Kitsunai, J. Nucl. Sci. Technol., 43, No. 2: 159 (2006). Crossref
  6. F. L. LaQue and M.A. Cordovi, The Corrosion of Pressure Circuit Materials in Boiling and Pressurized-Water Reactors (Special Report 69) (London: Iron Steel Inst.: 1961), p. 157.
  7. M. I. Solonin, V. P. Kondratev, S. N. Votinov, V. N. Rechytskyy, Yu. Y. Kazennov, A. B. Alekseev, and V. P. Kolotushkyn, Voprosy Atomnoi Nauki i Tekhniki, 1(52): 13 (1995) (in Russian).
  8. M. I. Solonin, A. B. Alekseev, Y. I. Kazennov, V. F. Khramtsov, V. P. Kondra'ev, T. A. Krasina, V. N. Rechitsky, V. N. Stepankov, and S. N. Votinov, Nucl. Mater., 233237: 586 (1996). Crossref
  9. M. I. Solonin, A. B. Alekseev, S. A. Averin, Yu. A. Burenkov, V. M. Chernov, B. K. Kardashev, V. P. Kondrat'ev, A. V. Kozlov, V. N. Rechitsky, and S. N. Votinov, J. Nucl. Mater., 258263, Part 2: 1762 (1998). Crossref
  10. A. V. Vatulin, V. P. Kondratev, V. N. Rechickiy, and M. I Solonin, Metallovedenie i Termicheskaya Obrabotka Metallov, 11 (593): 19 (2004) (in Russian).
  11. B. A. Gurovich, A. S. Frolov, D. A. Maltsev, E. A. Kuleshova, S. V. Fedotova, and I. V. Fedotov, Materialy XI Konferencii po Reaktornomu Materialovedeniyu (NIIAR, Dimitrovgrad, May 27-31, 2019) (in Russian).
  12. S. A. Kushmanov, I. N. Vasilchenko, V. V. Vyalitsyn, K. V. Zinin, I. I. Ionova, K. Yu. Kurakin, V. M. Makhin, A. N. Churkin, Yu. I. Mironov, S. E. Sirotkin, and V. D. Risovanyy, Vopr. At. Nauki Tekh., Ser.: Obespechenie Bezop. AES, 30: 15 (2011) (in Russian).
  13. V. I. Prokhorov, V. D. Risovanyy, and S. A. Kushmanov, Vopr. At. Nauki Tekh., Ser.: Obespechenie Bezop. AES, 30: 5 (2011) (in Russian).
  14. G. V. Kulakov, S. A. Ershov, Yu. V. Konovalov, M. V. Leonteva-Smirnova, V. N. Rechickiy, M. V. Skupov, and V. V. Fedotov, Yadernoe Toplivo Novogo Pokoleniya dlya AES: Tezisy Nauchno-Tekhnicheskoy Konferentsii AO 'TVEL' (Oct., 2018, Sochi), p. 37 (in Russian).
  15. G. V. Kulakov, S. A. Ershov, Yu. V. Konovalov, M. V. Leonteva-Smirnova, V. N. Rechickiy, M. V. Skupov, V. V. Fedotov, V. Yu. Shishin, and A. A. Sheldyakov, Tezisy Dokladov na XI Konferentsii po Reaktornomu Materialovedeniyu (May 27-31, 2019, Dimitrovgrad), p. 37 (in Russian).
  16. G. V. Kulakov, Yu. V. Konovalov, A. V. Vatulin, A. A. Kosaurov, V. Yu. Shishin, A. A. Sheldyakov, A. I. Romanov, O. A. Morozov, and O. B. Samoylov, At. Energ., 130, No. 4: 208 (2021) (in Russian). Crossref
  17. V. Zuyok, R. Rud, M. Tretyakov, N. Rud, Ya. Kushtym, I. Dykyy, I. Shevchenko, H. Rostova, and V. Shtefan, Probl. At. Sci. Technol., No. 4 (140): 89 (2022). Crossref
  18. B. A. Gurovich, A. S. Frolov, D. A. Maltsev, E. A. Kuleshova, and S. V. Fedotova, Sb. Tezisov Dokladov 15-y Mezhdunarodnoy Nauchno-Prakticheskoy Konferentsii po Atomnoy Ehnergetike, 2019), p. 10 (in Russian).
  19. A. A. Slobodov, V. I. Zarembo, V. G. Krickij, L. V. Puchkov, and V. M. Sedov, Zh. Prikl. Khim., 59, No. 5: 1030 (1986) (in Russian).
  20. I. Yu. Dobrovolskaya, Nauchno-Tehnicheskoye Soveshchanie 'Vodno-Khimicheskiy Rezhim Deystvuyushchikh AS (Sep. 1921, 2000, Moskva) (in Russian).
  21. V. G. Kritski, 3rd Res. Coord. Meet. 'Modelling of Transport of Radioactive Substances in Primary Circuit of Water Cooled Reactors (Nov. 610, 2000, Buenos Aires, Argentina).
  22. N. Gabor, P. Tilky, T. Pintér, A. Horvath, and R. Schiller, Nucl. Technology, 136: 331 (2001). Crossref
  23. State Standard 1987-01-01. Edinaya Sistema Zashity ot Korrozii i Stareniya. Metally i Splavy. Metody Opredeleniya Pokazateley Korrozii i Korrozionnoy Stoykosti. GOST 9.908-85. [Unified System of Corrosion and Ageing Protection. Metals and Alloys. Methods for Determination of Corrosion and Corrosion Resistance Indices. GOST 9.908-85] (Moskva: Izdatelstvo Standartov: 1990), p. 17 (in Russian).
  24. V. Krasnorutskyy, I. Petelguzov, V. Grytsyna, V. Zuyok, M. Tretyakov, R. Rud, O. Slabospytska, N. Ishchenko, and N. Svichkar, Journal of Materials Sciences and Applications, 2, No. 2: 10 (2016).
  25. ISO 8407:2021. Corrosion of Metals and Alloys - Removal of Corrosion Products from Corrosion Test Specimens.
  26. V. A. Zuyok, R. A. Rud, I. A. Petelguzov, and M. V. Tretyakov, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 1 (65): 141 (2010) (in Russian).
  27. V. G. Kritskiy, Yu. A. Rodionov, P. S. Styazhkin, and E. V. Zelenina, Meropriyatiya po Snizheniyu Moshnosti Dozy v Pomeshcheniyakh 1-go Kontura AES [Measures to Reduce the Dose Rate in the Premises of the 1st Circuit of the NPP] (Sankt-Peterburg: 2010) (Prepr./VNIPIET.2010) (in Russian).
  28. V. G. Kritskiy, Yu. A. Rodionov, P. S. Styazhkin, and I. G. Beresina, Massoperenos i Formirovanie Otlozheniy v 1 Konture AS s Reaktorami VVER i RBMK [Mass Transfer and Deposit Formation in the 1st Circuit of NPP with VVER and RBMK Reactors] (Sankt-Peterburg: 2003) (Prepr./VNIPIET. No. 002-003, 2003) (in Russian).