The Surfaces Properties of Steel Parts with Wear-Resistant Coatings of the 1М and 90% ВК6 + 10% 1M Composition Applied by the Method of Electrospark Alloying with the Use of Special Technological Environments. Pt. 2. Wear Resistance, Topographic and Mechanical Properties

V. B. Tarelnyk$^{1}$, O. P. Gaponova$^{2}$, N. V. Tarelnyk$^{1}$, Ie. V. Konoplianchenko$^{1}$, S. G. Bondarev$^{1}$, O. V. Radionov$^{1}$, M. M. Mayfat$^{1}$, A. V. Okhrimenko$^{2}$, M. Yu. Dumanchuk$^{1}$, K. G. Sirovitskiy$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 07.04.2023; final version - 13.04.2023. Download: PDF

In the article, as a result of comparative tests, it is established that steel samples with a coating applying the electrospark alloying method (ESA) with a BK6 hard-alloy electrode with the use of a special technological environment (STE) with a composition of 0.5%Si + 0.5%B + 2%Cr + 7%Ni + 90% vaseline, the wear of which after 24 hours of testing is of 221 mg that is 122% less than that for samples without coating and 15% and 31% for samples with coatings applying the nichrome-electrodes’ wire X20H80 using STE composition of 0.5%Si + 0.5%B + 59%BK6 + 40% vaseline and STE composition of 5%Si + 5%B + 90% vaseline, respectively, and by 22% and 47% less than with coatings applying the electrodes made by the method of powder metallurgy (PM), the composition of which is of 90%BK6 + 10%1M and 1M, respectively. For P6M5 steel, better resistance against hydroabrasive wear is possessed by samples with a coating applying the ESA method with an electrode made of hard alloy BK6 using STE composition of 0.5%Si + 0.5%B + 2%Cr + 7%Ni + 90% vaseline, the wear of which after 24 hours of testing is of 188 mg that is 43% less than in samples without coating and by 6% and 15% in samples with a coating applying the ESA method with an electrode made of nichrome wire of the composition X20H80 using STE composition of 0.5%Si + 0.5%B + 59%BK6 + 40% vaseline and STE composition of 5%Si + 5%B + 90% vaseline, and by 24% and 27% less than with coatings applying the electrodes produced by the PM method with a composition of 90%BK6 + 10%1M and 1M, respectively. In ESA with electrodes-tools made both by the PM method and by the new technology of wire X20H80 and hard alloy BK6 and STE, parts made of steel 45 and steel P6M5 have a decrease in the strength limit and yield limit, respectively, and both the relative elongation and the relative narrowing increase. With further abrasive-free ultrasonic finishing (AFUF), both the strength limit and the yield strength increase, and both the relative elongation and the relative narrowing decrease. For practical implementation, wear-resistant coatings formed according to the new technology, using tool electrodes made of X20H80 wire and hard alloy BK6 and STE in two stages with the following AFUF are proposed, the growth of the strength limit and the yield limit of which increase for steel 45 and steel P6M5 by 4.9% and 4.6% and 3.5% and 2.7%, respectively, and relative elongation and relative contraction decrease by 1.7% and 1.3% and 2.0% and 1.7%, respectively. At the same time, the surface roughness is $R_{a}$ = 1.1 $\mu$m, and the integrity is of 100%

Key words: electrospark alloying, electrode tool, coating, ‘white layer’, microhardness, roughness, integrity.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i06/0773.html

DOI: https://doi.org/10.15407/mfint.45.06.0773

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Rs, 81.40.Pq

Citation: V. B. Tarelnyk, O. P. Gaponova, N. V. Tarelnyk, Ie. V. Konoplianchenko, S. G. Bondarev, O. V. Radionov, M. M. Mayfat, A. V. Okhrimenko, M. Yu. Dumanchuk, and K. G. Sirovitskiy, The Surfaces Properties of Steel Parts with Wear-Resistant Coatings of the 1М and 90% ВК6 + 10% 1M Composition Applied by the Method of Electrospark Alloying with the Use of Special Technological Environments. Pt. 2. Wear Resistance, Topographic and Mechanical Properties, Metallofiz. Noveishie Tekhnol., 45, No. 6: 773—794 (2023) (in Ukrainian)


REFERENCES
  1. V. B. Tarelnyk, O. P. Gaponova, V. I. Melnyk, N. V. Tarelnyk, V. M. Zubko, V. M. Vlasovets, Ie. V. Konoplianchenko, S. G. Bondarev, A. Radionov, M. M. Mayfat, V. O. Okhrimenko, and A. V. Tkachenko, Metallofizika i Noveishie Tekhnologii, 45, No. 5: 663 (2023) (in Ukrainian).
  2. I. Kuric, M. Kandera, J. Klarák, V. Ivanov, and D. Więcek, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 148. Crossref
  3. A. Zahorulko, C. Kundera, and S. Hudkov, IOP ConferenceSeries: Materials Scienceand Engineering, 233: 012039 (2017). Crossref
  4. A. Zahorulko, Sealing Technology, 2015, Iss. 8: 7 (2015). Crossref
  5. A. A. Parkin, S. S. Zhatkin, and A. B. Semin, Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 18, No. 4 (2): 362 (2016) (in Russian).
  6. A. Panasyuk, O. Umanskyi, M. Storozhenko, and V. Akopyan, Key Engineering Materials, 527: 9 (2013). Crossref
  7. O. Umanskyi, M. Storozhenko, M. Antonov, O. Terentjev, O. Koval, and D. Goljandin, Key Engineering Materials, 604: 16 (2019). Crossref
  8. N. Radek and K. Bartkowiak, Physics Procedia A, 5: 417 (2010). Crossref
  9. V. G. Smelov, A. V. Sotov, and S. A. Kosirev, ARPN J. Eng. AppliedSci., 9, No. 10: 1854 (2014).
  10. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  11. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020). Crossref
  12. A. D. Pogrebnyak, A. M. Mahmud, I. T. Karasha, G. V. Kirik, R. Y. Tkachenko, and A. P. Sypylenko, J. Nano- Electron. Phys., 3, No. 4: 73 (2011).
  13. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Russian).
  14. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 148 (2012). Crossref
  15. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39:157 (2012). Crossref
  16. B. Antoszewski, O. Gaponova, V. Tarelnyk, O. Myslyvchenko, P. Kurp, T. Zhylenko, and Ie. Konoplianchenko, Materials, 14: 739 (2021). Crossref
  17. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55: 585 (2017). Crossref
  18. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Eng. Applied Electrochemistry, 53: 285 (2017). Crossref
  19. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 266 (2017). Crossref
  20. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 385 (2017). Crossref
  21. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 1: 47 (2019).
  22. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 3: 313 (2019).
  23. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Y. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57, Iss. 2: 173 (2021). Crossref
  24. V. O. Pchelintsev, T. P. Hovorun, V. M. Rab, and Kh. V. Berladir, Visnyk Sum. DU, 4: 123 (2012) (in Ukrainian).
  25. V. M. Golubets, I. M. Honchar, and Y. S. Shpulyar, Scientific Bulletin of UNFU, 28 (2): 111 (2018). Crossref
  26. DSTU 2249:2021 Obroblennya Rizannyam. Terminy, Vyznachennya Ponyat' ta Poznaky (in Ukrainian).
  27. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and B. Sarzhanov, Key Engineering Materials, 864: 265 (2020). Crossref