On the Features of the Magnetic State of $\gamma$-Fe–Ni Alloys

I. V. Zolotarevs’kyy, V. Yu. Ol’shanets’kyy

Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine

Received: 14.06.2023; final version - 01.09.2023. Download: PDF

The magnetic structure, nonequilibrium and equilibrium states, and magnetic inhomogeneities of austenite in invar Fe–Ni alloys are analysed to substantiate the possibility of the existence of concentration inhomogeneities with a disoriented magnetic structure, which can be the centres of the magnetic $\gamma$$\leftrightarrow$$\alpha$-transition of the first kind. The results of the considered experimental and theoretical studies of this system are summarised. As shown, the magnetic structure and non-equilibrium state of austenite alone cannot lead to the appearance of concentration (magnetic) inhomogeneities in invar alloys. As assumed, the existing concentration inhomogeneities are of fluctuation origin. A model is proposed that explains the basic invar properties of Fe–Ni alloys by the existence of the original magnetic structure of austenite and its inhomogeneous and non-equilibrium state relative to the $\alpha$-phase. It assumes that concentration inhomogeneities with a disoriented magnetic structure in the austenite of invar Fe–Ni alloys in a wide temperature range, from the Curie point to the martensitic point, can play the role of compressed elastic elements in the interior of the ferromagnetic $\gamma$-phase. In fact, they are the subcritical nuclei of $\alpha$-martensite of the first kind magnetic phase transition. Abnormally large changes in the volume of invar Fe–Ni alloys occur as a result of the combined action of a thermodynamic stimulus in the $\gamma$-phase, whose volume is ‘pushed’ to grow by numerous areas of inhomogeneities (subcritical nuclei of the $\alpha$ phase), and changes in its magnetisation in a strong magnetic field and/or during cooling due to the ordering of atomic magnetic moments.

Key words: invar alloys, concentration magnetic inhomogeneities, exchange integral, Curie and Neel points, equilibrium and non-equilibrium states, Fe$_{3}$Ni or FeNi $\gamma$-phases, ordinary and magnetic martensitic $\gamma$$\rightarrow$$\alpha$-transitions.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i11/1281.html

DOI: https://doi.org/10.15407/mfint.45.11.1281

PACS: 64.75.Nx, 75.30.Kz, 75.50.Bb, 75.50.Ee, 75.80.+q, 81.30.Hd, 81.30.Kf

Citation: I. V. Zolotarevs’kyy and V. Yu. Ol’shanets’kyy, On the Features of the Magnetic State of $\gamma$-Fe–Ni Alloys, Metallofiz. Noveishie Tekhnol., 45, No. 11: 1281—1292 (2023) (in Ukrainian)


REFERENCES
  1. V. L. Sedov, Antiferromagnetizm Gamma-Zheleza. Problema Invara [Antiferromagnetism of Gamma Iron. The Invar Problem] (Moskva: Nauka: 1987) (in Russian).
  2. I. V. Zolotarevskiy, Novyye Materialy i Tekhnologii v Metallurgii i Mashinostroenii, No. 2: 22 (2020) (in Russian).
  3. I. V. Zolotarevsky, M. O. Schetinina, and O. I. Zolotarevsky, Physics of Metals and Metallography, 122: 127 (2021). Crossref
  4. I. V. Zolotarevs'kyy, Metallofiz. Noveishie Tekhnol., 44, No. 2: 159 (2022) (in Ukrainian).
  5. I. V. Zolotarevs'kyy, V. Yu. Ol'shanets'kyy, and M. O. Shchetinina, Metallofiz. Noveishie Tekhnol., 45, No. 5: 699 (2023) (in Ukrainian).
  6. V. Yu. Ol'shanets'kyy and I. V. Zolotarevs'kyy, Novi Materialy i Tekhnologiyi v Metalurgiyi i Mashynobuduvanni, No. 2: 107 (2022) (in Ukrainian).
  7. S. V. Vonsovskiy, Magnetizm [Magnetism] (Moskva: Nauka: 1971) (in Russian).
  8. S. V. Grigor'ev, Issledovanie Kriticheskikh Yavleniy vblizi Tochki Kyuri v Invarnykh Zhelezo-Nikelevykh Splavakh Polyarizovannymi Neitronami [Investigation of Critical Phenomena near the Curie Point in Invar Iron-Nickel Alloys by Polarized Neutrons] (Thesis of Disser. for Cand. Phys.-Math. Sci.) (Saint Petersburg: 1998) (in Russian).
  9. A. Z. Men'shikov and V. A. Shestakov, Fiz. Met. Metalloved., 43, No. 4: 722 (1977) (in Russian).
  10. V. I. Goman'kov, E. V. Kozis, and B. N. Mokhov, Doklady AN SSSR, 225: 807 (1975) (in Russian).
  11. V. A. Makarov, I. M. Puzey, T. V. Sakharova, and O. V. Basargin, ZhETF, 88, No. 4: 1406 (1985) (in Russian).
  12. L. D. Voronchikhin, E. A. Zavadskiy, and I. G. Fakidov, Fiz. Met. Metalloved., 20, No. 5: 793 (1965) (in Russian).
  13. E. I. Kondorskiy and V. L. Sedov, ZhETF, 35: 1579 (1958) (in Russian).
  14. A. Chamberod, J. Laugier, and J. M. Penisson, J. Magn. Magn. Mater., 10: 139 (1979). Crossref
  15. K. B. Reuter, D. B. Williams, and J. I. Goldstein, Metall. Trans. A, 20, No. 4: 719 (1989). Crossref
  16. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, J. Phase Equilibria, 12, No. 3: 288 (1991). Crossref
  17. J. R. Guimaraes, J. Danon, R. B. Scorzelli, and I. S. Azevedo, J. Phys. F: Metal Physics, 10: L197 (1980). Crossref
  18. K. P. Belov, Uprugie, Teplovyye i Ehlektricheskie Yavleniya v Ferromagnitnykh Metallakh [Elastic, Thermal and Electrical Phenomena in Ferromagnetic Metals] (Moskva-Leningrad: GITTL: 1951) (in Russian).