Evolution of Copper Microstructure Subjected to Combined Twisting and Drawing Technology

A. V. Volokitin, T. D. Fedorova, A. I. Denissova

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Republic of Kazakhstan

Received: 10.10.2023; final version - 15.11.2023. Download: PDF

This work studies evolution of copper microstructure during a combined deformation process. The essence of this process is in deformation of copper wire in a rotating equal-channel stepped matrix with subsequent drawing. Deformed wire is examined using transmission electron microscopy and EBSD analysis. After three cycles of deformation, an ultrafine-grained gradient microstructure with a high component of high-angle grain boundaries is obtained.

Key words: copper, wire, twisting, drawing, microstructure.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i02/0121.html

DOI: https://doi.org/10.15407/mfint.46.02.0121

PACS: 46.80.+j, 62.20.F-, 62.40.+i, 81.20.Hy, 81.20.Wk, 81.40.Lm, 83.50.Uv

Citation: A. V. Volokitin, T. D. Fedorova, and A. I. Denissova, Evolution of Copper Microstructure Subjected to Combined Twisting and Drawing Technology, Metallofiz. Noveishie Tekhnol., 46, No. 2: 121—128 (2024)


REFERENCES
  1. I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023). Crossref
  2. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023). Crossref
  3. S. M. Yuan, L. T. Yan, W. D. Liu, and Q. Liu, J. Mater. Process. Technol., 211: 356 (2011). Crossref
  4. A. Bychkov and A. Kolesnikov, Metallogr., Microstruct., Anal., 12: 564 (2023). Crossref
  5. M. O. Kurin, O. O. Horbachov, A. V. Onopchenko, and T. V. Loza, Metallofiz. Noveishie Tekhnol., 44, No. 6: 785 (2022). Crossref
  6. I. E. Volokitina and A. V. Volokitin, Metallurgist, 67: 232 (2023). Crossref
  7. X. L. Wu, P. Jiang, and L. Chen, Mater. Res. Lett., 2, Iss. 4: 185 (2014). Crossref
  8. I. E. Volokitina, A. V. Volokitin, and E. A. Panin, Prog. Phys. Met., 23, Iss. 4: 684 (2022). Crossref
  9. M. Kawasaki, B. Ahn, H. J. Lee, A.P. Zhilyaev, and T. G. Langdon, J. Mater. Res., 31: 88 (2015). Crossref
  10. A. Naizabekov and E. Panin, J. Mater. Eng. Perform., 28: 1762 (2019). Crossref
  11. G. I. Raab, D. V. Gunderov, L. N. Shafigullin, Yu. M. Podrezov, M. I. Danylenko, N. K. Tsenev, R. N. Bakhtizin, G. N. Aleshin, and A. G. Raab, Mater. Phys. Mech., 24: 242 (2015).
  12. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Yu. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023). Crossref
  13. N. Stanford, U. Carlson, and M. R. Barnett, Metall. Mater. Trans A, 39: 934 (2008). Crossref
  14. M. A. Meyers, O. Vöhringer, and V. A. Lubarda, Acta. Mater., 49: 4025 (2001). Crossref
  15. I. E. Volokitina, Prog. Phys. Met., 24, No. 3: 593 (2023). Crossref