Formation of Criteria for Evaluating the Suitability of the Use of Filler Materials Made of Nickel Alloys in Additive Technologies of 3$D$ Surfacing

O. V. Yarovytsyn$^{1}$, M. O. Cherv’yakov$^{1}$, I. R. Volosatov$^{1}$, H. D. Khrushchov$^{1}$, V. A. Pyestov$^{1}$, O. O. Nakonechnyy$^{1}$, L. V. Cherv’yakova$^{1}$, S. O. Voronin$^{1}$, S. L. Chyhyleychyk$^{2}$, S. Ye. Kondratyuk$^{3}$, N. P. Zhelyeznyak$^{3}$, S. A. Kamenyeva$^{4}$, V. T. Zubkova$^{4}$

$^{1}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{2}$Motor Sich JSC, 15 Motorostroiteley Ave., UA-69068 Zaporizhzhya, Ukraine
$^{3}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{4}$State Enterprise Ukrainian Special Steels Institute, 74-A Patriotychna Str, UA-69005 Zaporizhzhya, Ukraine

Received: 30.09.2023; final version - 15.11.2023. Download: PDF

During selection of filler materials for 3$D$ deposition additive technologies, it is important to clarify the deformation capacity of multilayer-deposited metal in its ‘as-built’ structural state, which in its turn is suggested to be correlated with experimental data on ensuring or not ensuring the technological strength of corresponding products. A testing method of nickel alloys planned for applied application in 3$D$ deposition technologies is proposed and based on conducting evaluation mechanical tests for multilayer-deposited metal, including longitudinal tensile tests (20, 1000, 1100°С), static and impact bending tests (20°С). This method is approved by testing on 14 types of wire- and powder-based filler material. Corresponding deposited metal of Hastelloy C22, Inconel 625, ЭП648, ЧС40, Inconel 718, Inconel 939, Rene 80, Inconel 738LC, ЖС6К, ЖС6У, ЖС32 nickel alloys is obtained by multilayer arc-welding deposition of ‘vertical wall’-type workpieces. Two technological factors affecting deformational capacity of nickel-alloy-deposited metal in ‘as-built’ structural state have been exposed: the chemical composition by criteria of Al, Ti, Nb, Ta, W main alloying-elements’ content, which, given their certain amount, are capable of forming ${\gamma}'$-phase precipitate hardening; average weight content of oxygen and nitrogen. Based on the obtained experimental data on critical deformation $\varepsilon$, maximum bend angle before cracking $\beta$ and impact strength $KCU$ values, it is proposed to divide the nickel-alloy-deposited metal into three groups, which correlate with the possibility to provide technological strength at the current level of beam and arc 3$D$ deposition technological development.

Key words: additive 3$D$ technologies, technological strength, heat-resistant and high-temperature strength nickel alloys, ‘as-built’ structural state, mechanical tests, deformational capacity of deposited metal, average weight content of oxygen and nitrogen.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i02/0129.html

DOI: https://doi.org/10.15407/mfint.46.02.0129

PACS: 06.60.Vz, 46.50.+a, 62.20.mt, 68.35.bd, 81.05.Bx, 81.20.Vj, 81.40.Np

Citation: O. V. Yarovytsyn, M. O. Cherv’yakov, I. R. Volosatov, H. D. Khrushchov, V. A. Pyestov, O. O. Nakonechnyy, L. V. Cherv’yakova, S. O. Voronin, S. L. Chyhyleychyk, S. Ye. Kondratyuk, N. P. Zhelyeznyak, S. A. Kamenyeva, and V. T. Zubkova, Formation of Criteria for Evaluating the Suitability of the Use of Filler Materials Made of Nickel Alloys in Additive Technologies of 3$D$ Surfacing, Metallofiz. Noveishie Tekhnol., 46, No. 2: 129—149 (2024) (in Ukrainian)


REFERENCES
  1. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies 3D Printing, Rapid Prototyping and Direct Digital Manufacturing (New York: Springer Science  Business Media: 2015). Crossref
  2. D. Gu, Laser Additive Manufacturing of High-Performance Materials (Berlin, Heidelberg: Springer-Verlag: 2015).
  3. M. A. Zlenko, M. V. Nagaytsev, and V. M. Dovbysh, Additivnye Tekhnologii v Mashinostroenii [Additive Technologies in Mechanical Engineering] (Moskva: GNTs RF FGUP 'NAMI': 2015) (in Russian).
  4. H. Wang, W. Jiang, M. Valant, and R. Kovacevic, Proc. Institution of Mechanical Eng. B. J Eng. Manufacture, 217, Iss. 12: 1641 (2003). Crossref
  5. V. Korzhyk, V. Khaskin, O. Voitenko, V. Sydorets, and O. Dolianovskaia, Mater. Sci. Forum, 906: 121 (2017). Crossref
  6. S. L. Chyhyleychyk, I. A. Petryk, O. V. Ovchynnykov, and S. V. Kyrylakha, Aviatsiyno-Kosmichna Tekhnika ta Tekhnolohiya, 177, No. 1: 57 (2022) (in Ukrainian).
  7. ISO 17641-1:2004. Destructive Tests on Welds in Metallic Materials-Hot Cracking Tests for Weldments-Arc Welding Processes. Part 1 (ISO copyright office: 2004).
  8. G. B. Talypov, Svarochnye Deformatsii i Napryazheniya [Welding Deformation and Stress] (Leningrad: Mashinostroenie: 1973) (in Russian).
  9. V. I. Makhnenko, Raschetnye Metody Issledovaniya Kinetiki Svarochnykh Napryazheniy i Deformatsiy [Calculation Methods for Studying the Kinetics of Welding Stresses and Deformations] (Kiev: Naukova Dumka: 1976) (in Russian).
  10. Y.-C. Hagedorn, J. Risse, W. Meiners, N. Pirch, K. Wissenbach, and R. Poprawe, High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping (Eds. P. J. Bartolo, A. C. S. de Lemos, A. M. H. Pereira, A. J. Dos Santos Mateus, C. Ramos, C. Dos Santos, D. Oliveira, E. Pinto, F. Craveiro, H. M. C. da Rocha Terreiro Galha Bartolo, H. Almeida, I. Sousa, J. Matias, L. Durao, M. Gaspar, N. M. F. Alves, P. Carreira, and T. Ferreira, T. Marques) (CRC Press: 2013), p. 291. Crossref
  11. E. A. Lukina, K. O. Bazaleeva, N. V. Petrushin, and E. V. Tsvetkova, Tsvetnye Metally, No. 3: 55 (2016) (in Russian).
  12. N. V. Petrushin, A. G. Evgenov, A. G. Trennikov, and A. V. Zavodov, Materialy III Mezhdunarodnoy Konferentsii 'Additivnye Tekhnologii: Nastoyashchee i Budushchee' (March 23, 2017) (Moskva: 2017), p. 271 (in Russian).
  13. J. S. Zuback and T. DebRoy, Materials, No. 11: 2070 (2018). Crossref
  14. J.-U. Park, S.-Y. Jun, B. H. Lee, J. H. Jang, B.-S. Lee, H.-J. Lee, J.-H. Lee, and H.-U. Hong, Additive Manufacturing, 52, No. 4: 102680 (2022). Crossref
  15. O. S. Vodennikova, M. O. Koval', and S. A. Vodennikov, Metaloznavstvo ta Obrobka Metaliv, 28, No. 2: 12 (2022) (in Ukrainian). Crossref
  16. O. S. Vodennikova, M. O. Koval, and S. A. Vodennikov, Metallofiz. Noveishie Tekhnol., 43, No. 7: 925 (2021). Crossref
  17. K. A. Yushchenko, H. V. Zvyahintseva, O. V. Yarovytsyn, M. O. Cherv'yakov, H. D. Khrushchov, and I. R. Volosatov, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1345 (2019) (in Ukrainian).
  18. O. V. Yarovytsyn, Metaloznavstvo ta Obrobka Metaliv, 26, No. 2: 38 (2020) (in Ukrainian). Crossref
  19. K. A. Yushchenko, O. V. Yarovitsyn, O. O. Nakonechnyi, I. R. Volosatov, O. O. Fomakin, and G. D. Khrushchov, The Paton Welding J., No. 11: 25 (2020). Crossref
  20. GOST 6996-66. Svarnye Soedineniya. Metody Opredeleniya Mekhanicheskikh Svoystv [GOST 6996-66. Welded Joints. Methods to Determine Mechanical Properties] (Moskva: 2006) (in Russian).
  21. K. A. Yushchenko, V. S. Savchenko, L. V. Chervyakova, S. David, and J. Vitek, The Paton Welding J., No. 6: 2 (2005).
  22. I. A. Petryk, Protsesy Vidnovlennya Zvaryuvannyam ta Payannyam Lopatok Hazoturbinnykh Dvyhuniv z Vazhkozvaryuvanykh Splaviv na Nikeleviy ta Tytanoviy Osnovi [Processes of Restoration of Gas Turbine Engine Blades Made of Nickel- and Titanium-Based Hard-to-Weld Alloys by Welding and Brazing] (Thesis of Disser. for PhD Techn. Sci.) (Kyiv: E. O. Paton Electric Welding Institute, N.A.S. of Ukraine: 2007) (in Ukrainian).
  23. ISO 4491-4:2013(E). Metallic Powders-Determination of Oxygen Content Reduction Methods-Part 4. Total Oxygen by Reduction-Extraction (ISO copyright office: 2013).
  24. ASTME E1019-11. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques (ASTM International: 2011).
  25. EN ISO 14175-2008. Welding Consumables-Gases and Gas Mixtures for Fusion Welding and Allied Processes (ISO copyright office: 2008).
  26. M. Yu. Kakhovs'kyy, A. V. Hulyayev, O. V. Yarovytsyn, and M. O. Cherv'yakov, Ozbroyennya ta Viys'kova Tekhnika, 12, No. 4: 61 (2016) (in Ukrainian).
  27. A. V. Yarovitsyn, K. A. Yushchenko, A. A. Nakonechny, and I. A. Petrik, The Paton Welding J., No. 6: 31 (2009).
  28. K. A. Yushchenko, A. V. Yarovitsyn, N. O. Chervyakov, A. V. Zvyagintseva, I. R. Volosatov, and G. D. Khrushchov, The Paton Welding J., No. 7: 29 (2019). Crossref
  29. ISO/ASTM 52900:2015(E). Standard Terminology for Additive Manufacturing-General Principles-Terminology (ISO copyright office: 2015).
  30. Ch. Sims, N. Stollov, and V. Khagel', Supersplavy II. Zharoprochnye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok [Superalloys II: High Temperature Materials for Aerospace and Industrial Power Applications] (Moskva: Metallurgiya: 1995) (in Russian).
  31. S. T. Kishkin, Sozdanie, Issledovanie i Primenenie Zharoprochnykh Splavov [Creation, Research and Application of High Temperature Strength Alloys] (Moskva: Nauka: 2006) (in Russian).
  32. R. C. Reed, The Superalloys Fundamentals and Applications (Cambridge: Cambridge University Press: 2006).
  33. V. I. Lakomskiy, Plazmenno-Dugovoy Pereplav [Plasma Arc Remelting] (Ed. B. E. Paton) (Kiev: Tekhnika: 1974) (in Russian).
  34. A. A. Erokhin, Plazmenno-Dugovaya Plavka Metallov i Splavov. Fiziko-Khimicheskie Protsessy [Plasma Arc Melting of Metals and Alloys. Physical and Chemical Processes] (Moskva: Nauka: 1978) (in Russian).
  35. O. V. Yarovytsyn and A. V. Mykytchyk, Metallofiz. Noveishie Tekhnol., 43, No. 4: 519 (2021) (in Ukrainian). Crossref
  36. K. A. Yushchenko and A. V. Yarovitsyn, The Paton Welding J., No. 6-7: 115 (2014). Crossref
  37. V. P. Kuznetsov, V. P. Lesnikov, and I. P. Konakova, Struktura i Svoystva Zharoprochnogo Nikelevogo Splava ZhS32-VI [Structure and Properties of ZhS32-VI High Temperature Strength Alloy] (Ekaterinburg: Kvist: 2010) (in Russian).
  38. Marochnik Staley i Splavov [Grade List for Steels and Alloys] (Ed. A. S. Zubchenko) (Moskva: Mashinostroenie: 2003) (in Russian).
  39. ISO/TR 17641-3:2005. Destructive Tests on Welds in Metallic Materials-Hot Cracking Tests for Weldments-Arc Welding Processes. - Part 3. Externally Loaded Tests (ISO copyright office: 2005).
  40. A. G. Evgenov, S. V. Nerush, and S. A. Vasilenko, Trudy VIAM, No. 5 (2014) (in Russian).
  41. S. V. Nerush, A. S. Ermolaev, A. M. Rogalev, and S. A. Vasilenko, Trudy VIAM, No. 8 (2016) (in Russian).
  42. YU 1-92-177-91. Zagotovka Shikhtovaya Mernaya Liteynykh Zharoprochnykh Splavov Vakuumnoy Vyplavki. Izmenenie No. 5 [TU 1-92-177-91. Vacuum-Melt Cast High-Temperature Strength Measurement Charge Billet. Ed. No. 5] (in Russian).
  43. R. Acharya, J. J. Gambone, M. A. Kaplan, G. E. Fuchs, N. G. Rudawski, and S. Das, Adv. Eng. Mater., 17, Iss. 7: 942 (2015). Crossref
  44. EOS Nickel Alloy IN939 Material Data Sheet https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/nickelalloy-inconel/material_datasheet_eos_nickelalloy_in939_premium_en_web.pdf
  45. K. A. Yushchenko, O. V. Yarovytsyn, H. D. Khrushchov, I. A. Petryk, and S. L. Chyhyleychyk, Kosmichna Nauka i Tekhnolohiya, 28, No. 3: 3 (2022) (in Ukrainian). Crossref
  46. J. C. Lippold, Welding Metallurgy and Weldability (John Willey and Sons: 2015). Crossref
  47. Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, A. A. N. Németh, D. G. McCartney, and R. C. Reed, Acta Mater., 202, No. 1: 417 (2021). Crossref