Improvement of the Quality Parameters of the Surface Layers of Steel Parts after Aluminizing by Electrospark Alloying. Pt. 2. Results of the Influence of the Productivity of Aluminizing by Electrospark Alloying on the Structural State of Steel Surfaces

V. B. Tarel’nyk$^{1}$, O. P. Haponova$^{2}$, N. V. Tarel’nyk$^{1}$, Ye. V. Konoplyanchenko$^{1}$, S. H. Bondarev$^{1}$, O. V. Radionov$^{1}$, M. M. Mayfat$^{1}$, A. V. Okhrimenko$^{2}$, M. Yu. Dumanchuk$^{1}$, K. H. Syrovyts’kyy$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 30.05.2023; final version - 25.07.2023. Download: PDF

In the article, investigation is carried out at the second stage of aluminizing, when a consistent substance containing aluminium powder (the first option) or graphite powder and aluminium powder (the second option) is applied to the surface that has undergone aluminizing at the first stage, before further electrospark alloying with an aluminium electrode, and, regardless of the drying of the consistent substance, the aluminizing process is carried out at a discharge energy of 0.52–2.6 J and a productivity of 1.0–2.0 cm$^{2}$/min, while the discharge energy and productivity are chosen such that the surface roughness decreases by $\cong$ 3–4 times. At the second stage aluminizing for both options, when using a consistent substance that contains aluminium powder or aluminium powder and graphite powder, the microhardness of the ‘white layer’ and the diffusion zone are increased (to a greater degree when graphite is present in the consistent substance), the surface roughness is decreased, and the integrity of the coating is of 100%. Before practical implementation, it is recommended to carry out the aluminizing process according to the first option at the discharge energy $Wp$ = 4.6–6.8 J, using a consistent substance containing aluminium powder and graphite powder at the second stage.

Key words: electrospark alloying, aluminizing, productivity, surface layer, quality, structure, roughness, microhardness, thickness of the ‘white layer’, coating continuity.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i04/0313.html

DOI: https://doi.org/10.15407/mfint.46.04.0313

PACS: 62.20.Qp ,68.35.Ct, 68.55.Ln, 81.15.Rs, 81.40.Pq, 81.65.Lp

Citation: V. B. Tarel’nyk, O. P. Haponova, N. V. Tarel’nyk, Ye. V. Konoplyanchenko, S. H. Bondarev, O. V. Radionov, M. M. Mayfat, A. V. Okhrimenko, M. Yu. Dumanchuk, and K. H. Syrovyts’kyy, Improvement of the Quality Parameters of the Surface Layers of Steel Parts after Aluminizing by Electrospark Alloying. Pt. 2. Results of the Influence of the Productivity of Aluminizing by Electrospark Alloying on the Structural State of Steel Surfaces, Metallofiz. Noveishie Tekhnol., 46, No. 4: 313—324 (2024) (in Ukrainian)


REFERENCES
  1. O. P. Haponova, V. B. Tarel'nyk, T. I. Zhylenko, N. V. Tarel'nyk, O. A. Sarzhanov, V. I. Mel'nyk, V. M. Vlasovets', S. V. Pavlovskyy, V. O. Okhrimenko, and A. V. Tkachenko, Metallofiz. Noveishie Tekhnol., 45, No. 12: 1449 (2023) (in Ukrainian). Crossref
  2. M. Brochu, J. G. Portillo, J. Milligan, and D. W. Heard, The Open Surf. Sci. J., No. 3: 105 (2011). Crossref
  3. V. Goncharuk, A. Paramonov, F. Grosu, A. Polikarpov, and A. Kovali, Mater. Sci. Cond. Matter Phys. Editia, 8: 314 (2016).
  4. A. I. Komarov, L. Kyzioł, D. V. Orda, D. O. Iskandarova, I. A. Sosnovskiy, A. A. Kurilyonok, and D. Żuk, Mater., 14: 3555 (2021). Crossref
  5. S. Sheikh, L. Gan, X. Montero, H. Murakami, and S. Guo, Intermetallics, 123: 106838 (2020). Crossref
  6. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  7. G. V. Kirik, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 56, Nos. 11-12: 688 (2018). Crossref
  8. V. B. Tarel'nik, O. P. Gaponova, and O. M. Mislivchenko, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1377 (2019) (in Russian). Crossref
  9. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2020), p. 216.
  10. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Mater. Sci. Forum, 968: 131 (2019). Crossref
  11. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Eng. Applied Electrochem., 57: 173 (2021). Crossref
  12. V. B. Tarel'nik, O. P. Gaponova, E. V. Konoplyanchenko, V. S. Martsinkovskiy, N. V. Tarel'nik, and O. A. Vasilenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Russian). Crossref
  13. V. B. Tarel'nik, O. P. Gaponova, E. V. Konoplyanchenko, V. S. Martsinkovskiy, N. V. Tarel'nik, and O. A. Vasilenko, Metallofiz. Noveishie Tekhnol., 41, No. 3: 313 (2019) (in Russian). Crossref
  14. V. B. Tarel'nik, E. V.Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petroleum Eng., 53, Nos. 7-8: 540 (2017). Crossref