Improvement of Quality Parameters of Surface Layers of Steel Parts after Aluminizing by Electrospark Alloying. Pt. 1. Features of the Structural State of Steel Surfaces after Aluminizing

O. P. Haponova$^{1}$, V. B. Tarelnyk$^{2}$, T. I. Zhylenko$^{1}$, N. V. Tarel’nyk$^{2}$, O. A. Sarzhanov$^{2}$, V. I. Mel’nyk$^{3}$, V. M. Vlasovets’$^{4}$, S. V. Pavlovskyy$^{2}$, V. O. Okhrimenko$^{1}$, A. V. Tkachenko$^{2}$

$^{1}$Сумский государственный университет, ул. Римского-Корсакова, 2, 40007 Сумы, Украина
$^{2}$Сумский национальный аграрный университет, ул. Герасима Кондратьева, 160, 40021 Сумы, Украина
$^{3}$Государственный биотехнологический университет, ул. Алчевских, 44, 61002 Харьков, Украина
$^{4}$Lviv National Environmental University, 1 Volodymyra Velykoho Str., UA-30831 Dublyany, Ukraine

Получена: 30.05.2023; окончательный вариант - 25.07.2023. Скачать: PDF

The structure formation and properties of the surface layers of steel parts after alloying by traditional technologies and the method of electrospark alloying (ESA) is analysed in the article. As a result of the study of the productivity of the ESA process by aluminium electrode-tool, which is one of the important parameters of the ESA technology, reserves are revealed for improving the quality of the surface layers of steel parts during aluminizing. Two options for reducing productivity in relation to the traditional are studied: the first one, when productivity is reduced by $\cong$ 2 times; the second one, when performance is reduced by $\cong$ 4 times. As established, in the first variant, when the discharge energy increases from 0.52 to 6.8 J, at the first stage of aluminizing of steel 20 and steel 40, the thickness of the ‘white’ layer from 20 to 75 and from 25 to 110 $\mu$m, respectively; the thickness of the diffusion zone increases from 35 to 120 and from 40 to 140 $\mu$m, respectively; the microhardness of the ‘white layer’ increases from 2200 to 7400 and from 2400 to 7450 MPa, respectively; the surface roughness $Ra$ increases from 1.1 to 9.0 and from 1.0 to 8.1 $\mu$m, respectively, and the continuity increases from 80 to 100% starting with $Wp$ = 4.6 J and from 60 to 100% at $Wp$ = 6.8 J. In the second variant, when the discharge energy increases from 0.52 to 6.8 J, at the first stage of processing steel 20 and steel 40, the thickness of the ‘white’ layer increases for steel 20 from 25 to 60 $\mu$m at $Wp$ = 4.6 J, and then it doesn’t change for steel 40 from 30 to 100 $\mu$m; the thickness of the diffusion zone increases from 45 to 130, respectively; the microhardness of the ‘white layer’ increases from 2250 to 7300 and from 2450 to 7300 MPa, respectively; the surface roughness $Ra$ increases from 1.3 to 9.0 and from 1.6 to 8.1 $\mu$m, respectively, and the continuity for both steel 20 and steel 40 at $Wp$ = 0.52 J is of 95% and further increases to 100%.

Ключевые слова: electrospark alloying, aluminizing, productivity, surface layer, structure, roughness, microhardness, thickness of the ‘white layer’, coating continuity.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i12/1449.html

PACS: 52.80.Mg, 62.20.Qp, 68.35.Ct, 68.55.Ln, 81.15.Rs, 81.65.Lp, 82.33.Xj


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. V. Martsynkovskyy, V. Tarelnyk, V. Martsynkovskyy, I. Konoplianchenko, A. Zhukov, P. Kurp, P. Furmańczyk, and N. Tarelnyk, AIP Conf. Proc., 2017: 020017 (2018).
  2. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Advances in Design, Simulation and Manufacturing (Eds. V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 382.
  3. T. Kresan, S. Pylypaka, T. Volina, I. Rybenko, and O. Tatsenko, Advanced Manufacturing Processes IV (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, and I. Pavlenko) (Springer: 2023), p. 44. Crossref
  4. T. Volina, S. Pylypaka, V. Babka, O. Zalevska, and A. Rebrii, Advanced Manufacturing Processes IV (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, and I. Pavlenko) (Springer: 2023), p. 506 (2023). Crossref
  5. S. Pylypaka, T. Volina, I. Hryshchenko, S. Dieniezhnikov, and I. Rybenko, Advances in Design, Simulation and Manufacturing V (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2022), p. 112. Crossref
  6. V. B. Tarel’nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53, Nos. 3–4: 266 (2017). Crossref
  7. V. B. Tarel’nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53, Nos. 5–6: 385 (2017). Crossref
  8. O. P. Umanskyi, M. S. Storozhenko, V. B. Tarelnyk, O. Y. Koval, Y. V. Gubin, N. V. Tarelnyk, and T. V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, Nos. 1–2: 57 (2020). Crossref
  9. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Eng. Applied Electrochemistry, 57: 173 (2021). Crossref
  10. О. П. Гапонова, В. Б. Тарельник, В. С. Марцинковський, Є. В. Коноплянченко, В. І. Мельник, В. М. Власовець, О. А. Саржанов, Н. В. Тарельник, М. О. Мікуліна, А. Д. Поливаний, Г. В. Кирик, А. Б. Баталова, Металофіз. новітні технол., 43, № 8: 1121 (2021). Crossref
  11. Т. В. Мосина, Новые огнеупоры, 9: 61 (2013).
  12. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conference Series: Mater. Sci. Eng., 233: 012039 (2017). Crossref
  13. І. П. Шацький, В. В. Перепічка, Л. Я. Роп’як, Металофіз. новітні технол., 42, № 1: 69 (2020). Crossref
  14. M. S. Storozhenko, A. P. Umanskii, A. E. Terentiev, and I. M. Zakiev, Powder Metallurgy and Metal Ceramics, 56, No. 2: 60 (2017). Crossref
  15. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O. Terentiev, Yu. Gubin, and O Kostenko, Powder Metallurgy and Metal Ceramics, 59, Nos. 7–8: 434 (2020). Crossref
  16. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022). Crossref
  17. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Металофіз. новітні технол., 44, № 4: 493 (2022). Crossref
  18. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European J. Enterprise Technologies, 1, No. 5: 53 (2016).
  19. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, 15th International Conference on Computer Sciences and Information Technologies (CSIT) (Sept. 23–26, 2020, Zbarazh) (IEEE: 2021), p. 50.
  20. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022). Crossref
  21. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022). Crossref
  22. F. A. P. Fernandes, S. C. Heck, R. G. Pereira, and A. Lombardi-Neto, J. Achievements Mater. Manufacturing Eng., 40: 175 (2010).
  23. Shu-Hung Yeh, Liu-Ho Chiu, and Heng Chang, Engineering, 3, No. 9: 942 (2011).
  24. S. Ben Slima, Mater. Sci. Applications, 3, No. 9: 640 (2012).
  25. M. Brochu, J. G. Portillo, J. Milligan, and D. W. Heard, Open Surf. Sci. J., No. 3: 105 (2011). Crossref
  26. И. Г. Бродова, И. Г. Ширинкина, Ю. П. Зайков, Физ. мет. металловед., 116, № 9: 928 (2015). Crossref
  27. В. Ф. Даненко, Л. М. Гуревич, Г. В. Понкратова, Известия ВолгГТУ, 9, № 10: 30 (2014).
  28. В. И. Муравьев, П. В. Бахматов, Н. Г. Лончаков, С. З. Чинилов, Упрочняющие технологии и покрытия, 11: 25 (2013).
  29. V. I. Kuzmin, A. A. Mikhal’chenko, O. B. Kovalev, and E. V. Kartaev, J. Thermal Spray Technology, 21, No. 1: 159 (2012). Crossref
  30. A. D. Pogrebnjak, V. I. Ivashchenko, P. L. Skrynskyy, O. V. Bondar, P. Konarski, K. Zaleski, S. Jurga, and E. Coy, Composites Part B: Eng., 142: 85 (2018). Crossref
  31. A. D. Pogrebnjak, A. A. Bagdasaryan, P. Horodek, V. B. Tarelnyk, V. V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V. M. Beresnev, Mater. Lett., 303: 130548 (2021). Crossref
  32. G. Morand, P. Chevallier, L. Bonilla-Gameros, S. Turgeon, M. Cloutier, M. Da Silva Pires, A. Sarkissian, M. Tatoulian, L. Houssiau, and D. Mantovani, Surf. Interface Analysis, 53, No. 7: 658 (2021). Crossref
  33. G. Maistro, S. Kante, L. Nyborg, and Y. Cao, Surf. Interfaces, 24: 101093 (2021). Crossref
  34. V. G. Smelov, A. V. Sotov, and S. A. Kosirev, ARPN J. Eng. Appl. Sci., 9, No. 10: 1854 (2014).
  35. B. Antoszewski, S. Tofil, M. Scendo, and V. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017). Crossref
  36. I. Pliszka and N. Radek, Proc. Eng., 192: 707 (2017). Crossref
  37. B. Antoszewski, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, P. Kurp, T. I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021). Crossref
  38. Д. Н. Коротаев, Технологические возможности формирования износостойких наноструктур электроискровым легированием (Омск: СибАДИ: 2009).
  39. А. Д. Верхотуров, Формирование поверхностного слоя металла при электроискровом легировании (Владивосток: Дальнаука: 1995).
  40. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55: 585 (2017). Crossref
  41. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2020), p. 216.
  42. V. B. Tarel’nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Eng. Appl. Electrochem., 53: 285 (2017). Crossref
  43. В. Б. Тарельник, О. П. Гапонова, Е. В. Коноплянченко, В. С. Марцинковский, Н. В. Тарельник, О. А. Василенко, Металлофиз. новейшие технол., 41, № 2: 173 (2019). Crossref
  44. В. Б. Тарельник, О. П. Гапонова, Е. В. Коноплянченко, В. С. Марцинковский, Н. В. Тарельник, О. А. Василенко, Металлофиз. новейшие технол., 41, № 3: 313 (2019). Crossref
  45. V. B. Tarel’nik, E. V. Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petroleum Eng., 53, Nos. 7–8: 540 (2017). Crossref
  46. В. С. Марцинковский, Спосіб обробки вкладишів підшипників ковзання, Патент України № 77906 (Опубліковано 2007 р.).
  47. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Proc. Eng., 39: 148 (2012). Crossref
  48. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Proc. Eng., 39: 157 (2012). Crossref
  49. С. Ф. Вдовин, Е. С. Махнев, Н. Л. Минеева, В. В. Тарасов, А. П. Андреев, Электронная обработка материалов, 6: 15 (1988).
  50. С. М. Решетников, С. Ф. Вдовин, Электронная обработка материалов, 3: 33 (1977).
  51. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  52. G. V. Kirik, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 56, Nos. 11–12: 688 (2018). Crossref
  53. В. Б. Тарельник, О. П. Гапонова, О. М. Мисливченко, Металлофиз. новейшие технол., 41, № 10: 1377 (2019). Crossref