Analysis of Extreme Values of Stress and Strain Invariants in Multiphase Polycrystals

V. Yu. Мarina, V. I. Мarina

Технический университет Молдовы, бульв. Штефан чел Маре, 168, MD-2004 Кишинёв, Молдова

Получена: 04.12.2023; окончательный вариант - 06.05.2024. Скачать: PDF

The limits of change in stress/strain invariants in the phases of polycrystalline materials with cubic lattices are investigated. The relationship between the local and macroscopic parameters is established on the basis of the following principles: averaged connections, orthogonality of fluctuations of the stress and strain tensors, extremum of discrepancy between the macroscopic measures and suitable average values of microscopic analogues. General expressions for extreme values of stress/strain deviator invariants for the polycrystal phases are obtained. The non-monotonic nature of changes in the extreme values of the invariants of stress/strain deviators and volumetric stresses/strains depending on the phase concentration is revealed. In case of a two-phase polycrystal, as the harder phase increases, the invariants first increase, reaching their maximum value at a concentration of less than 5%, and then, monotonically decrease. Volumetric macrostress has a nonlinear effect on the patterns of changes in volumetric stresses in the grains of a polycrystalline material.

Ключевые слова: stress, strain, invariants, averaged connections, orthogonality, anisotropy.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i06/0591.html

PACS: 02.70.Dh, 46.15.-x, 46.50.+a, 62.20.D-, 62.20.mm, 83.80.Fg


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. G. Fokin and T. D. Shermergor, PMTF, No. 3: 123 (1968) (in Russian).
  2. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids, 10, Iss. 4: 335 (1962). Crossref
  3. L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, Statisticheskaya Mekhanika i Ehffektivnyye Svoistva Materialov [Statistical Mechanics and Effective Properties of Materials] (Kiev: Naukova Dumka: 1993) (in Russian).
  4. V. Yu. Marina, Numerical Investigations in Continuum Mechanics (Kishinev: 1987), p. 47.
  5. V. Yu. Marina, Appl. Mech., 6: 9 (1997).
  6. V. Yu. Marina and V. I. Marina, Metallofiz. Noveishie Tekhnol., 42, No. 3: 415 (2020) (in Russian). Crossref
  7. V. Yu. Marina, Mech. Solids, 58: 727 (2023). Crossref
  8. P. V. Trusov, News of the Russian Academy of Sciences. MTT, 1: 69 (2021) (in Russian).
  9. J. R. Willis, J Appl. Mech., 50: 1202 (1983). Crossref
  10. B. Flipona, C. Kellera, R. Queyb, and F. Barbea, Int. J. Solids Structures, 184: 178 (2020). Crossref
  11. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids, 10, Iss. 4: 335 (1962). Crossref
  12. Z. Hashin, J. Mech. Phys. Solids, 50: 481 (1983). Crossref
  13. R. Hill, Proc. Phys. Soc. A, 65: 349 (1952). Crossref
  14. R. Hill, Progress in Appl. Mech., 99 (1963).
  15. E. Kroner, J. Mech. Phys. Solids, 15, Iss. 5: 319 (1967). Crossref
  16. E. Kroner, Inst. I. Engng. Sci., 1: 261 (1963).
  17. P. V. Trusov, A. I. Shveikin, E. S. Nachaeva, and P. S. Volegov, Phys. Mesomechanics, 15: 58 (2012). Crossref
  18. S. K. Kanun, PMTF, No. 4: 194 (1975) (in Russian).
  19. V. Yu. Marina, News of the Academy of Sciences of Moldova. Mathematics Series, 2: 16 (1998).
  20. V. Yu. Marina and V. I. Marina, Int. Appl. Mech., 57: 707 (2022). Crossref
  21. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Moskva: Nauka: 1977) (in Russian).