Thermal Stability of Nanoscale Co—Sb Films

Yu. N. Makogon$^{1}$, E. P. Pavlova$^{1}$, S. I. Sidorenko$^{1}$, D. Bеkе$^{2}$, А. Csik$^{3}$, R. А. Shkarban$^{1}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$University of Debrecen, Department of Solid State Physics, P.O. Box 2, H-4010 Debrecen, Hungary
$^{3}$Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, H-4001 Debrecen, Hungary

Received: 26.05.2014. Download: PDF

Formation of phase composition and structure is investigated in nanoscale CoSb$_{x}$ (30 nm) (1.82 $\leq$ х $\leq$ 4.16) films deposited by the method of molecular-beam epitaxy on the substrates of the oxidized monocrystalline silicon at room temperature and 200°C with subsequent thermal treatment in a vacuum within the temperature range of 300—700°C. As determined, the films after the deposition are in amorphous state on cold substrate and in polycrystalline one without texture on heated substrate. Crystallization of amorphous CoSb$_{x}$ films occurs at heating within the temperature range of $\cong$ 140—200°C. In films with higher Sb content, the temperature range of crystallization increases and is shifted to the side of higher temperature. Intensive process of evaporation of excessive Sb and Sb from antimonides is observed at annealing of X-ray amorphous films above 300°C and at annealing of polycrystalline films above 450—500°C. It leads to increase in amount of the CoSb and CoSb$_{2}$ phases and to decrease in CoSb$_{3}$ content.

Key words: phase composition, evaporation, nanoscale film, skutterudite, annealing.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i12/1621.html

DOI: https://doi.org/10.15407/mfint.36.12.1621

PACS: 68.37.Ps, 68.55.Nq, 68.60.Dv, 73.50.Lw, 82.80.Yc, 84.60.Rb, 85.80.Fi

Citation: Yu. N. Makogon, E. P. Pavlova, S. I. Sidorenko, D. Bеkе, А. Csik, and R. А. Shkarban, Thermal Stability of Nanoscale Co—Sb Films, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1621—1634 (2014) (in Russian)


REFERENCES
  1. G. A. Slack, CRC Handbook of Thermoelectrics (Ed. D. M. Rowe) (Boca Raton: CRC Press: 1995), p. 407.
  2. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer: 2001). Crossref
  3. Sh. Li, Z. He, M. S. Toprak, Ch. Stiewe, E. Muller, and M. Muhammed, phys. status solidi (RRL), 1, No. 6: 259 (2007). Crossref
  4. A. Harnwunggmoung, K. Kurosaki, A. Kosuga, M. Ishimaru, Th. Plirdpring, R. Yimnirun, J. Jutimoosik, S. Rujirawat, Yu. Ohishi, H. Muta, and Sh. Yamanaka, J. Appl. Phys., 112: 043509 (2012). Crossref
  5. M. Puyet, B. Lenoir, A. Dauscher, C. Candolfi, J. Hejtmanek, C. Stiewe, and E. Müller, Appl. Phys. Lett., 101: 222105 (2012). Crossref
  6. M. Stoica and C. S. Lo, Phys. Rev. B, 86: 115211 (2012). Crossref
  7. D. Zhao, Ch. Tian, Yu. Liu, Ch. Zhan, and L. Chen, J. Alloys Compd., 509: 3166 (2011). Crossref
  8. S.-M. Choi, K.-H. Kim, S.-M. Jeong, H.-S. Choi, Yu. S. Lim, W.-S. Seo, and I.-H. Kim, J. Electron. Mater., 41, No. 6: 1004 (2012). Crossref
  9. Zh.-W. Ruan, L.-Sh. Liu, P.-Ch. Zhai, P.-F. Wen, and Q.-J. Zhang, J. Electron. Mater., 41, No. 6: 1487 (2012). Crossref
  10. J. García-Ca-adas, A. V. Powell, A. Kaltzoglou, P. Vaqueiro, and G. Min, J. Electron. Mater., 42, No. 6: 1369 (2013). Crossref
  11. T. Su, Ch. He, H. Li, X. Guo, Sh. Li, H. Ma, and X. Jia, J. Electron. Mater., 42, No. 1: 109 (2013). Crossref
  12. P.-X. Lu, L.-B. Qu, and Q.-H. Cheng, J. Alloys Compd., 558: 50 (2013). Crossref
  13. J. Y. Peng, P. N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard, and T. M. Tritt, J. Appl. Phys., 104: 053710 (2008). Crossref
  14. R. C. Mallik, R. Anbalagan, K. K. Raut, A. Bali, E. Royanian, E. Bauer, G. Rogl, and P. Rogl, J. Phys.: Condens. Matter, 25: 105701 (2013). Crossref
  15. M. Daniel, M. Friedemann, N. Jöhrmann, A. Liebig, J. Donges, M. Hietschold, G. Beddies, and M. Albrecht, phys. status solidi (a), 210, No. 1: 140 (2013). Crossref
  16. J. C. Caylor, A. M. Stacy, and B. Bloom, 18th International Conference on Thermoelectrics (Aug. 29–Sept. 2, 1999, Baltimore), p. 657.
  17. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L. Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci., 266: 100 (2013). Crossref
  18. G. L. Katona, I. A. Vladymyrskyi, I. M. Makogon, S. I. Sidorenko, F. Kristaly, L. Daroczi, A. Csik, A. Liebig, G. Beddies, M. Albrecht, and D. L. Beke, Appl. Phys. A, 115, Iss. 1: 203 (2014). Crossref
  19. A. A. Rusakov, Rentgenografiya Metallov: Uchebnik dlya Vuzov (Moscow: Atomizdat: 1977) (in Russian).
  20. D. Zhaoa, Ch. Tiana, and Yu. Liua, J. Alloys Compd., 509: 3166 (2011). Crossref