Effect of Liquid Salt Bath Nitrocarburizing on Mechanical Properties of Low-Alloy Sintered Steels

S. Serrai, S. Mechachti, O. Benchiheub, S. Boudebane, M. Fellah, M. Z. Touhami

Badji Mokhtar University, BO 12, CP 23000 Annaba, Algeria

Received: 28.12.2017. Download: PDF

The purpose of this study is to produce Fe–2Cu–2Ni–0.7Mo–$X$C steels by means of the powder metallurgy at different sintering temperatures. The mechanical properties of sintered steels have recently reached a level equivalent to that of steels produced by other processes. The static and dynamic mechanical properties of parts made of sintered steel depend on density and microstructure. Many process parameters such as initial composition, alloying elements, atmosphere, time, sintering temperature, and nitrocarburizing influence the microstructure of steel parts. The compacts’ preparation involves powder mixing, cold pressing at 500 MPa, and sintering at 1250°C within the H2 atmosphere for 2 hours and 25 min. The influence of sintering temperature on both hardness and microstructure of the steel is investigated. In this study, sintered Fe–2Cu–2Ni–0.7Mo–$X$C-type steels are developed. The impact of nitrocarburizing on this structure is evaluated. Microscopy, SEM, and destructive testing are used for characterization of the sintered steels.

Key words: microstructure, nitrocarburizing, alloying elements, porosity, density, microhardness.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i04/0515.html

DOI: https://doi.org/10.15407/mfint.40.04.0515

PACS: 06.60.Vz, 61.72.Ff, 62.20.Qp, 81.20.Ev, 81.40.Np, 81.40.Pq, 81.65.Lp

Citation: S. Serrai, S. Mechachti, O. Benchiheub, S. Boudebane, M. Fellah, and M. Z. Touhami, Effect of Liquid Salt Bath Nitrocarburizing on Mechanical Properties of Low-Alloy Sintered Steels, Metallofiz. Noveishie Tekhnol., 40, No. 4: 515—527 (2018)


REFERENCES
  1. R. M. German, Powder Metallurgy of Iron and Steel (New York: John Willey and Sons: 1998).
  2. K. S. Narasimhan, Materials Chemical Physic, 67: 56 (2001). Crossref
  3. R. J. Causton and J. J. Fulmer, Proc. Advances in Powder Metallurgy and Particulate Materials, 5: 17 (1992).
  4. V. A. Tracey, Proc. Conf. on Advances in Powder Metallurgy and Particulate Materials (Eds. A. Lawley and A. Swanson) (California, USA: 1992), vol. 5, p. 303.
  5. G. S. Upadhyaya, Sintered Metallic and Ceramic Materials. Preparation, Properties and Applications (New York: John Wiley and Sons: 2000).
  6. H. Khorsand, S. M. Habibi, H. Yoozbashizadea, K. Janghorban, S. M. S. Reihani, H. Rahmani Seraji, and M. Ashtari, Materials and Design, 23, Iss. 7: 667 (2002). Crossref
  7. R. YIlmaz and A. Gökçe, Proc. 13th International Metallurgy and Materials Congress (Istanbul: 2006), p. 903.
  8. R. YIlmaz and A. Gökçe, Proc. 11th International Materials Symposium (Denizli: 2006), p. 760.
  9. R. YIlmaz, A. Gökçe, and H. Kapdibaú, Advanced Materials Research, Materials and Technologies, 22–23: 71 (2007).
  10. R. Yilmaz and Ö. Özgün, Proc. 14 the International Metallurgy and Materials Congress (Istanbul: 2008).
  11. N. Chawla, S. Polasik, K. S. Narasimhan, T. Murphy, M. Koopman, and K. K. Chawla, Int. J. Powder Metall., 37: 49 (2001).
  12. N. Chawla, T. F. Murphy, K. S. Narasimhan, M. Koopman, and K. K. Chawla, Mater. Sci. Eng. A, 308, Iss. 1–2: 180 (2001). Crossref
  13. N. Chawla, D. Babic, J. J. Williams, S. J. Polasik, M. Marucci, and K. S. Narasimhan, Adv. Powder Metall. Part. Mater Metal Powder Industries Federation, 5: 104 (2002).
  14. S. J. Polasik, J. J. Williams, and N. Chawla, Metall. Mater. Trans. A, 33, Iss. 1: 73 (2002). Crossref
  15. P. Lemieux, Y. Thomas, P. E. Mongeon, S. Pelletier, and S. St-Laurent, Powder Metallurgy Technology, 24(3): 227 (2006).
  16. Eprouvette Pour Essai de Traction, Norme ISO 2740 (2007).
  17. Eprouvette Non Entaillée pour Essai de Résilience, Norme ISO 5754 (1978).
  18. Détermination de la Résistance à la Rupture Transversale, Norme ISO 3325 (1996).
  19. C. Ionici and D. Dobrota, Science of Sintering, 45, No. 1: 21 (2013). Crossref
  20. S. M. Habibi, K. Janghorban, H. Khorsand, and S. A. J. Jahromi, Proc. 3rd International Powder Metallurgy Conference (Ankara: Turkish Powder Metallurgy Association: 2002), p. 398.
  21. E. Dudrova, M. Kabatova, R. Bidulsky, and A. S. Wronski, Powder Metallurgy, 47: 181 (2004). Crossref
  22. Steel Heat Treatment. Handbook (Ed. G. E. Totten) (CRC Press: 2006).
  23. Höganas Handbook for Sintered Components. Design and Mechanical Properties (Höganas: 2004).
  24. Höganas Handbook for Sintered Components. Production of Sintered Components (Höganas: 2004).
  25. A. Basu, J. Dutta Majumdar, J. Alphonsa, S. Mukherjee, and I. Manna, Mater. Lett., 62: 3117 (2008). Crossref
  26. F. Chagnon and L. Tremblay, World Congress and Exhibition (Vienna: 2004).
  27. W. M. De Silva, R. Binder, and J. D. B. de Mello, Wear, 258: 166 (2005). Crossref
  28. R. Hoffmann and K. H. Weissohn, The Use of Oxygen Probes in Nitriding and Nitro-Carburizing, No. 267: 39 (1993).
  29. D. Ghiglione, C. Louroux, and C. Tournier, Technique de L'ingénieur, M1227 (2002).
  30. H. C. Pavanati, G. Strafellini, A. M. Maliska, and A. N. Klein, Wear, 265: 301 (2008). Crossref
  31. N. Candela, F. Velasco, and J. M. Torralba, Materials Science and Engineering A, 259, Iss. 1: 98 (1999). Crossref
  32. P. Belkin, S. Kusmanov, A. Naumov, and Y. Parkaeva, Adv. Mater. Res., 704: 31 (2013).