Influence of High Rates of Cooling on a Phase Composition and Physical Properties of the Co–Be and Cu–Be Alloys

V. F. Bashev, O. I. Kushnerov, Ye. V. Il’chenko, S. I. Ryabtsev, N. O. Kutseva, А. А. Kostina

Oles Honchar Dnipro National University, 13 Naukova Str., 49050 Dnipro, Ukraine

Received: 10.02.2018; final version - 07.08.2018. Download: PDF

The formation of homogeneous highly supersaturated (up to 23 at.% Be and 31.4 at.% Be in a Co–Be alloy and a Cu–Be alloy, respectively) solid solutions having the same composition as the initial liquid ($C_0$) is revealed in the Co–Be and Cu–Be alloys by the method of quenching from the liquid state (QLS). At the maximum cooling rates (10$^7$ K/s) sufficient to form an amorphous solid state, it is not possible to prevent ordering processes in the congruent equiatomic phase of CsCl-type Co–Be. At the same time, for a Cu–Be alloy, it is shown that, under the QLS conditions, a hybrid interstitial–substitutional-type solid solution can be formed. As experimentally confirmed, under the QLS conditions, a significant supercooling of the melt below the decomposition temperature of the phases of the eutectoid composition, namely, $\beta_1$ and $\beta$ in the Co–Be and Cu–Be alloys, respectively, is took place. The positive role of the QLS method in increasing of the level of the mechanical and hard-magnetic characteristics in rapid-quenched films is shown.

Key words: splat-quenching, peritectic and eutectoid reactions, equiatomic phase, magnetic characteristics, highly supersaturated solid solution.



PACS: 61.66.Dk, 62.20.Qp, 75.30.Kz, 81.05.Bх, 81.30.Bx, 81.40.Ef, 81.40.Rs

Citation: V. F. Bashev, O. I. Kushnerov, Ye. V. Il’chenko, S. I. Ryabtsev, N. O. Kutseva, and А. А. Kostina, Influence of High Rates of Cooling on a Phase Composition and Physical Properties of the Co–Be and Cu–Be Alloys, Metallofiz. Noveishie Tekhnol., 40, No. 9: 1231—1245 (2018) (in Russian)

  1. L. G. Korshunov, A. V. Korznikov, and N. L. Chernenko, Fizika Metallov i Metallovedenie, 111, No. 4: 395 (2011) (in Russian).
  2. Y. Zhou, K. Song, J. Xing, Z. Li, and X.Guo, Acta Metallurgica Sinica (English Letters), 29, Iss. 4: 399 (2016). Crossref
  3. R. Monzen, T. Hosoda, Y. Takagawa, and C. Watanabe, J. Mater. Sci., 46, Iss. 12: 4284 (2011). Crossref
  4. M. P. Ahmed, H. S. Jailani, S. R. Mohideen, and A. Rajadurai, Metallography, Microstructure, and Analysis, 5, Iss. 6: 528 (2016). Crossref
  5. Kenneth A. Walsh, Beryllium Chemistry and Processing (Materials Park, Ohio, USA: ASM International: 2009).
  6. M. Hansen and K. Anderko, Struktury Dvoynykh Splavov [Structures of Binary Alloys] (Moscow: Izdatel'stvo NTL: 1962) (in Russian).
  7. T. B. Massalskii, Binary Alloy Phase Diagrams (Materials Park, Ohio, USA: ASM International: 1990).
  8. V. F. Bashev and O. I. Kushnerov, Fizika Metallov i Metallovedenie, 118, No. 1: 39 (2017) (in Russian).
  9. I. S. Miroshnichenko, Zakalka iz Zhidkogo Sostoyaniya [Quenching from a Liquid State] (Moscow: Metallurgiya: 1982) (in Russian).
  10. V. K. Nosenko, O. Yu. Rudenko, T. N. Moiseeva, V. V. Maksimov, M. S. Nizameyev, A. I. Limanovskii, O. M. Semyrga, and V. I. Tkatch, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1681 (2015) (in Russian). Crossref
  11. A. A. Chernov, Uspekhi Fizicheskikh Nauk, 100, No. 2: 317 (1970) (in Russian). Crossref
  12. V. F. Bashev, F. F. Dotsenko, I. S. Miroshnichenko, and A. V. Teslya, Metally, No. 5: 120 (1990) (in Russian).
  13. W. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (London: Pergamon Press: 1958).
  14. G. M. Vorob'ev, V. F. Bashev, and V. I. Bol'shakov, Dopov. Nac. Akad. Nauk Ukr., No. 8: 115 (1998) (in Russian).
  15. R. Roy and R. Hasegawa, Solid State Communications, 27, No. 4: 471 (1978). Crossref
  16. R. Ray, M. Segnini, and B. C. Giessen, Solid State Communications, 10, No. 1: 163 (1972). Crossref
  17. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz [X-Ray and Electrooptical Analysis] (Moscow: MISiS: 2002) (in Russian).