Influence of the Impurity Ordering on the Energy Spectrum and Electrical Conductivity of Graphene

S. P. Repetsky$^{1}$, I. G. Vyshyvana$^{1}$, S. P. Kruchinin$^{2}$, O. Ya. Kuznetsova$^{3}$, R. M. Melnyk$^{4}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, 14-b Metrologichna Str., UA-03143 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Cosmonaut Komarov Ave., UA-03058 Kyiv, Ukraine
$^{4}$National University of Kyiv-Mohyla Academy, 2 H. Skovoroda Str., UA-04070 Kyiv, Ukraine

Received: 21.12.2018; final version - 15.01.2019. Download: PDF

In the one-band tight-binding model, the influence of substitutional impurities on the energy spectrum and electrical conductivity of graphene is studied. As determined, the ordering of substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the energy spectrum of graphene with width $\eta|\delta|$ centred at the point $y\delta$, where $\eta$ is the parameter of ordering, $\delta$ is the difference of the scattering potentials of impurity and carbon atoms, and $y$ is the impurity concentration. If the Fermi level falls in the region of the mentioned gap, then the electrical conductivity $\sigma_{\alpha\alpha} → \infty$ at the ordering of graphene, $i.e.$, the metal–dielectric transition arises. If the Fermi level is located outside the gap, then the electrical conductivity increases with the parameter of order $\eta$ by the relation $\sigma_{\alpha\alpha} \approx (y^2 - (1/4)\eta^2)^{-1}$. At the concentration $y$ = 1/2, when the ordering of impurities $\eta$ → 1, the electrical conductivity of graphene $\sigma_{\alpha\alpha} → \infty$, $i.e.$, the transition of graphene in the state of ideal electrical conductance arises. The localization region of impurity electronic states, which arise at the edges of the spectrum and edges of the energy gap, is investigated.

Key words: graphene, energy gap, density of state, impurity concentration, ordering parameter, Green’s function, metal–insulator transition, region of localization of impurity electronic states.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i04/0427.html

DOI: https://doi.org/10.15407/mfint.41.04.0427

PACS: 71.23.An, 71.30.+h, 71.55.Ak, 71.55.Jv, 72.10.-d

Citation: S. P. Repetsky, I. G. Vyshyvana, S. P. Kruchinin, O. Ya. Kuznetsova, and R. M. Melnyk, Influence of the Impurity Ordering on the Energy Spectrum and Electrical Conductivity of Graphene, Metallofiz. Noveishie Tekhnol., 41, No. 4: 427—443 (2019) (in Ukrainian)


REFERENCES
  1. J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P. Hao, Y.-S. Kim, G. Kresse, and J. P. Perdew, Phys. Rev. B, 84: 035117 (2011). Crossref
  2. C. Yelgel and G. P. Srivastava, Appl. Surface Sci., 258: 8338 (2012). Crossref
  3. P. A. Denis, Chem. Phys. Lett, 492: 251 (2010). Crossref
  4. Xiaohui Deng, Yanqun Wu, Jiayu Dai, Dongdong Kang, and Dengyu Zhang, Phys. Lett. A, 375: 3890 (2011). Crossref
  5. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 73, No. 24: 241402(R) (2006). Crossref
  6. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 75: 245401 (2007). Crossref
  7. S. S. Pershoguba, Yu. V. Skrypnyk, and V. M. Loktev, Phys. Rev. B, 80, No. 21: 214201 (2009). Crossref
  8. T. M. Radchenko, A. A. Shylau, and I. V. Zozoulenko, Phys. Rev. B, 86: 035418-1-13 (2012). Crossref
  9. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, Yu. I. Prylutskyy, P. Szroeder, and S. Biniak, Carbon, 101: 37 (2016). Crossref
  10. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Phys. Lett. A, 378, Nos. 30-31: 2270 (2014). Crossref
  11. T. M. Radchenko, A. A. Shylau, I. V. Zozoulenko, and A. Ferreira, Phys. Rev. B, 87: 195448-1-14 (2013). Crossref
  12. T. M. Radchenko, A. A. Shylau, and I. V. Zozoulenko, Solid State Comm., 195: 88 (2014). Crossref
  13. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Configurations of Structural Defects in Graphene and Their Effects on Its Transport Properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B. T. Edwards) (Hauppauge, N.Y. USA: Nova Science Publishers, Inc.: 2014), Chapter 7, p. 219, arXiv:1406.0783
  14. V. F. Los' and S. P. Repetsky, J. Phys.: Condens. Matter., 6: 1707 (1994). Crossref
  15. S. P. Repetsky, I. G. Vyshyvana, S. P. Kruchinin, and Stefano Bellucci, Scientific Reports, 8, Article number: 9123 (2018). Crossref
  16. B. Velicky, Phys. Rev., 184: 614 (1969). Crossref
  17. J. C. Slater and G. F. Koster, Phys. Rev., 94, No. 6: 1498 (1954). Crossref
  18. S. P. Repetsky, I. G. Vyshyvana, E. Ya. Kuznetsova, and S. P. Kruchinin, In-ternational Journal of Modern Physics B, 32: 1840030 (2018). Crossref