Fundamental System of Equations for Electromagnetic Field Momentum and Energy in an Inhomogeneous Medium. I. Fundamental Equations in Local Basis

A. A. Dyshekov

Kabardino-Balkarian State University, 173 Chernyshevsky Str., 360004 Nalchik, Kabardino-Balkar Republic, Russia

Received: 15.01.2019; final version - 04.02.2019. Download: PDF

A new formalism is developed for the description of the electromagnetic field interaction with a crystal. The main characteristics of the proposed approach are the energy and momentum density of the field. The reaction of the environment to an external perturbation is considered as a local change in the geometry, which consists in the rotation of an orthogonal basis built on the induction vectors and the field momentum. In this case, the geometric characteristics are determined by the structural parameters of the medium. Fundamental equations in the local basis are obtained. As shown, the separation of waves by polarization, when considering problems of X-ray wave scattering on a crystal, is not quite correct even in the case of an ideal crystal. General equations are obtained that allows one to calculate the momentum and energy of a field when it interacts with a crystal.

Key words: energy-momentum tensor, electromagnetic field, Maxwell tensor, canonical form of the field tensor.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i05/0683.html

DOI: https://doi.org/10.15407/mfint.41.05.0683

PACS: 03.50.De, 41.50.+h, 61.05.cc, 61.05.cf, 61.05.cm, 61.05.cp

Citation: A. A. Dyshekov, Fundamental System of Equations for Electromagnetic Field Momentum and Energy in an Inhomogeneous Medium. I. Fundamental Equations in Local Basis, Metallofiz. Noveishie Tekhnol., 41, No. 5: 683—698 (2019) (in Russian)


REFERENCES
  1. A. A. Dyshekov, Tech. Phys. Lett., 44, Iss. 10: 902 (2018). Crossref
  2. R. W. James, The Optical Principles of the Diffraction of X-Rays. (London: G. Bell and sons Ltd.: 1962), vol. II.
  3. Z. G. Pinsker, Dynamical Scattering of X-Rays in Crystals. Springer Series in Solid-State Sciences 3 (Berlin, Heidelberg, New York: Springer-Verlag: 1978). Crossref
  4. A. A. Dyshekov and Yu. P. Khapachev, Novye Podkhody k Zadacham Rentgenodifraktsionnoy Kristallooptiki [New Approaches to the Problems of X-ray Diffraction Crystal Optics] (Eds. V. A. Elyukhin and B. S. Karamurzov) (Nalchik: Kabardino-Balkarian State University: 2010) (in Russian).
  5. A. A. Dyshekov, Crystallogr. Rep., 58, Iss. 7: 984 (2013). Crossref
  6. F. N. Chukhovskii and Yu. P. Khapachev, Cryst. Rev., 3, Iss. 3: 257 (1993). Crossref
  7. L. S. Polak, Variatsionnye Printsipy Mekhaniki. Ikh Razvitie i Primenenie v Fizike (Moscow: Librokom: 2010) (in Russian).
  8. N. P. Konopleva and V. N. Popov, Kalibrovochnye Polya (Moscow: Atomizdat: 1980) (in Russian).
  9. M. O. Katanaev, Geometricheskie Metody v Matematicheskoy Fizike (Moscow: V. A. Steklov Mathematical Institute, R.A.S., Kazan: Kazan Federal University: 2016) (in Russian).
  10. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, A. Tchelnokov, and D. Pagnoux, Photonic Crystals. Towards Nanoscale Photonic Devices (Springer: 2008).
  11. V. V. Aristov and L. G. Shabel'nikov, Phys. Usp., 51: 57 (2008). Crossref
  12. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Sovremennaya Geometriya. Metody i Prylozheniya (Moscow: Nauka: 1986) (in Russian).