Fundamental System of Equations for Electromagnetic Field Momentum and Energy in an Inhomogeneous Medium. II. Fundamental Equations in Cartesian Basis

A. A. Dyshekov

Kabardino-Balkarian State University, 173 Chernyshevsky Str., 360004 Nalchik, Kabardino-Balkar Republic, Russian Federation

Received: 15.01.2019; final version - 04.02.2019. Download: PDF

Fundamental equations are obtained for the momentum and energy of the electromagnetic field in the Cartesian basis in an inhomogeneous medium. These equations can be the basis for a new approach in describing the interaction of electromagnetic radiation with matter when the polarization of the medium changes locally. As shown, the separation of waves by polarization when considering problems of X-ray wave scattering on a crystal is not quite correct even in the case of an ideal crystal.

Key words: energy-momentum tensor, electromagnetic field, Maxwell tensor, Gateaux derivative, canonical form of the field tensor.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i07/0965.html

DOI: https://doi.org/10.15407/mfint.41.07.0965

PACS: 03.50.De, 41.50.+h, 61.05.cc, 61.05.cf, 61.05.cm, 61.05.cp

Citation: A. A. Dyshekov, Fundamental System of Equations for Electromagnetic Field Momentum and Energy in an Inhomogeneous Medium. II. Fundamental Equations in Cartesian Basis, Metallofiz. Noveishie Tekhnol., 41, No. 7: 965—979 (2019) (in Russian)


REFERENCES
  1. A. A. Dyshekov, Metallofiz. Noveishie Tekhnol., 41, No. 5: 683: (2019) (in Russian). Crossref
  2. A. N. Kolmogorov and S. V. Fomin, Elementy Teorii Funktsiy i Funktsionalnogo Analiza [Elements of the Theory of Functions and Functional Analysis] (Moscow: Nauka: 1981) (in Russian).
  3. E. N. Vilchevskaya, Tenzornaya Algebra i Tenzornyy Analiz [Tensor Algebra and Tensor Analysis] (St. Petersburg: Peter the Great St. Petersburg Polytechnic University: 2012) (in Russian).
  4. A. I. Lurie, Teoriya Uprugosti [Theory of Elasticity] (Moscow: Nauka: 1970) (in Russian).
  5. Z. G. Pinsker, Rentgenovskaya Kristallooptika [X-Ray Crystal Optics] (Moscow: Nauka: 1982) (in Russian).
  6. N. P. Konopleva and V. N. Popov, Kalibrovochnye Polya [Gauge Fields] (Moscow: Atomizdat: 1972) (in Russian).
  7. Yu. I. Sirotin and M. P. Shaskolskaya, Osnovy Kristallofiziki [Basics of Crystal Physics] (Moscow: Nauka: 1975) (in Russian).
  8. A. A. Dyshekov, Tech. Phys. Lett., 44, Iss. 10: 902 (2018). Crossref
  9. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Osnovnye Differentsialnye Uravneniya Matematicheskoy Fiziki [Basic Differential Equations of Mathematical Physics] (Moscow: Gosud. Izd-vo Fiz.-Mat. Lit.: 1962) (in Russian).