Influence of Cobalt on the Structure and Technological Properties of Alloys of the Cu–Mn System

S. Maksymova, P. Kovalchuk, V. Voronov

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 26.03.2019; final version - 08.07.2019. Download: PDF

High-temperature differential thermal analysis is used to establish that an increase in cobalt concentration in a copper–manganese alloy leads to an increase in the solidus and liquidus temperatures and the expansion of the melting temperature range. The alloy Cu–Mn–Co in the cast state is characterized by a cast dendritic structure. An increase in the amount of cobalt in the copper–manganese alloy contributes to increasing its microhardness. During the spreading of alloys of this system along the Kovar, an increase in the interfacial angle from 8° to 26° is observed with an increase in the cobalt concentration from 0.5% to 4.5%. Local X-ray microspectrum analysis shows that when the brazing filler metal crystallizes on the base metal substrate (under non-equilibrium conditions), a copper-based solid solution structure with inclusions of the dispersed phase enriched in iron is formed.

Key words: alloys of copper–manganese–cobalt system, fusion range, structure, microhardness, wetting angle, solid solution.



PACS: 06.60.Vz, 61.66.Dk, 61.72.Mm, 61.72.S-, 81.20.Vj, 81.30.Fb, 81.70.Jb

Citation: S. Maksymova, P. Kovalchuk, and V. Voronov, Influence of Cobalt on the Structure and Technological Properties of Alloys of the Cu–Mn System, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1365—1375 (2019) (in Ukrainian)

  1. M. E. Drits, N. R. Bochvar, and L. S. Guzey, Dvoynye i Mnogokomponentnye Sistemy na Osnove Medi [Dual and Multicomponent Systems Based on Copper] (Ed. A. N. Chernov) (Moscow: Nauka: 1979) (in Russian).
  2. A. Y. Pashkov, Issledovanie i Razrabotka Tekhnologiy Polucheniya Splavov Systemy Cu-Ni-Mn Metodom Mekhanicheskogo Legirovaniya dlya Vysokotemperaturnoy Payki [Research and Development of Technology for Producing Cu-Ni-Mn System Alloys by Mechanical Alloying for High-Temperature Soldering] (Thesis of Disser. for Cand. Tech. Sci.) (Moscow: MISiS: 2009) (in Russian).
  3. Nobuya Sasaguri and Yasuhiro Matsubara, J. Japan Foundry Engineering Society, 70, Iss. 12: 884 (1998). Crossref
  4. A. Salli, Marganets [Manganese] (Ed. M. L. Bernstein) (Moscow: NTI on Ferrous and Non-Ferrous Metallurgy: 1959) (in Russian).
  5. V. E. Bazhenov, Izvestiya Vuzov. Tsvetnaya Metallurgiya, 1: 49 (2013) (in Russian). Crossref
  6. V. K. Nosenko, G. P. Brekharya, V. Z. Balan, and T. Yu. Nikolaeva, Metaloznavstvo ta Termichna Obrobka Metaliv, No. 2: 63 (2016) (in Russian).
  7. Qiuhui Liang, Chunzhi Xia, Xiangping Xu, and Jiasheng Zou, Sci. Eng. Compos. Mater., 22, No. 3: 245 (2015). Crossref
  8. I. I. Il'ina, Yu. I. Bereznikov, I. N. Pashkov, S. V. Shokin, and I. V. Rodin, Pripoy dlya Payki Izdeliy i Sposob dlya Ego Izgotovleniya [Filler Metal for Brazing Products and Method for Its Manufacture]: Patent RU 95 108 511 A1 (Publ. 20.04.1997) (in Russian).
  9. V. N. Semenov, Pripoy dlya Payki Bronzy so Stal'yu [Solder for Brazing Bronze with Steel]: Patent RU 96 116 690 A (Publ. 27.11.1998) (in Russian).
  10. C. P. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, J. Alloys Compd., 438, Iss. 1-2: 129 (2007). Crossref
  11. V. N. Radzievskiy and G. G. Tkachenko, Vysokotemperaturnaya Vakuumnaya Payka v Kompressorostroenii [High-Temperature Vacuum Brazing in Compressor Engineering] (Kyiv: Ekotekhnologiya: 2009) (in Russian).