Influence of Microstructure of Titanium Alloys Produced with Powder Technology on Their Corrosion Resistance in Acid Environments

D. G. Savvakin$^{1}$, O. O. Stasiuk$^{1}$, I. M. Pohrelyuk$^{2}$, K. S. Shlyakhetka$^{2}$, O. V. Ovchinnikov$^{3}$, S. M. Tkachenko$^{3}$, O. V. Osypenko$^{4}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$G. V. Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova Str., UA-79060 Lviv, Ukraine
$^{3}$Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine
$^{4}$Zaporizhzhya Titanium&Magnesium Combine’, 18 Teplychna Str., UA-69600 Zaporizhzhya, Ukraine

Received: 22.06.2020. Download: PDF

Corrosion characteristics of commercially pure Ti and Ti–6Al–4V alloy manufactured with press-and-sinter powder metallurgy are studied in HCl and H$_2$SO$_4$ water solutions with acid concentrations up to 80%. Changing of powder metallurgy processing parameters (powder size, compaction and vacuum sintering regimes) results in a number of structural conditions of produced materials with different residual porosity (1 to 5%) and grain sizes. As shown, the residual porosity of sintered titanium alloys is a key microstructure factor affecting corrosion resistance. Increase in total porosity and pore sizes leads to higher corrosion rate, while decreased porosity (1–2%) and minimized pore size is useful for improvement of corrosion characteristics. Optimization of material microstructure provides corrosion resistance of produced titanium-based materials sufficient for practice application in aggressive environments at chemical industries.

Key words: titanium alloys, powders, pores, microstructure, acid environment, corrosion resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1347.html

DOI: https://doi.org/10.15407/mfint.42.10.1347

PACS: 61.72.Qq, 81.20.Ev, 81.65.Kn, 82.45.Bb

Citation: D. G. Savvakin, O. O. Stasiuk, I. M. Pohrelyuk, K. S. Shlyakhetka, O. V. Ovchinnikov, S. M. Tkachenko, and O. V. Osypenko, Influence of Microstructure of Titanium Alloys Produced with Powder Technology on Their Corrosion Resistance in Acid Environments, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1347—1362 (2020) (in Ukrainian)


REFERENCES
  1. G. Lütjering and J. C. Williams, Titanium (2 edition) (Berlin, Heidelberg: Springer-Verlag: 2007). Crossref
  2. D. Prando, A. Brenna, M. V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, and M. P. Pedeferri, J. Appl. Biomater. Funct. Mater., 15, Iss. 4: e291 (2018). Crossref
  3. M. Niinomi, M. Nakai, and J. Hieda, Acta Biomater., 8: 3888 (2012). Crossref
  4. Z. Z. Fang, J. D. Paramore, P. Sun, K. S. Ravi Chandran, Ying Zhang, Yang Xia, Fei Cao, Mark Koopman, and Michael Free, International Material Rev., 63, Iss. 7: 407 (2018). Crossref
  5. Titanium Powder Metallurgy: Science, Technology and Applications (Eds. Ma Qian and Francis H. Froes) (Elsevier: 2015). Crossref
  6. F. H. Froes and D. Eylon, Inter. Mater. Rev., 35, No. 3: 162 (1990). Crossref
  7. O. M. Ivasishin, D. H. Savvakin, and M. M. Humenyak. Metallofiz. Noveishie Tekhnol., 33, No 7: 899 (2011) (in Russian).
  8. O. M. Ivasishin, D. G. Savvakin, M. M. Gumenyak, and A. B. Bondarchuk, Key Engineering Materials, 520: 121 (2012). Crossref
  9. I. M. Pohrelyuk, O. V. Ovchynnykov, A. A. Skrebtsov, Kh. S. Shvachko, R. V. Proskurnyak, and S. M. Lavrys', Mater. Sci., 52, Iss. 2: 246 (2016). Crossref
  10. O. M. Ivasishin, D. Eylon, V. I. Bondarchuk, and D. G. Savvakin, Defect Diffusion Forum, 277: 177 (2008). Crossref
  11. Struktura i Korroziya Metallov i Splavov. Atlas [Structure and Corrosion of Metals and Alloys. Atlas] (Ed. Ye. A. Ulyanin) (Moscow: Metallurgiya: 1989) (in Russian).