Surface modification of 3D-printed alloy Ti–6Al–4V by ultrasonic impact treatment

S. M. Voloshko$^{1}$, B. M. Mordyuk$^{1,2}$, M. O. Vasylyev$^{2}$, V. I. Zakiev$^{1,3}$, A. P. Burmak$^{1}$, N. V. Franchik$^{1}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine

Received: 21.11.2022; final version - 15.01.2023. Download: PDF

The mechanical characteristics, phase composition, macroscopic residual stresses and surface topography of the Ti–6Al–4V alloy produced by different technologies—selective laser melting (SLM) of powder and traditional hot rolling (VT6) were studied. Ultrasonic impact treatment (UIT) in an inert environment was used to modify the surface of samples of various types. In the initial state, the SLM sample, which consists of the hexagonal $\alpha$-phase, has a slightly higher (1.3 times) microhardness ($HV$) value than that of the hot-rolled VT6 bar, for which, in addition to the $\alpha$-phase, the presence of the cubic $\beta$-phase (18%) was observed. After UIT, an increase in the value of $HV_{100}$ by 1.6–1.8 times was registered, regardless of the alloy production method. Data obtained by the nanoindentation method satisfactorily agree with this result—the instrumental hardness, $H_{IT}$, increases by 1.4–1.5 times. Among the reasons for hardening (the hardness increase) recorded for both types of studied alloys, a high level of compressive stresses of the 1st kind plays a decisive role in the case of UIT-treated hot-rolled samples of VT6. The increase in microhardness of the UIT-treated SLM samples occurs largely due to the deformational refinement of the grain/subgrain structure (down to 15 nm) and a significant dislocation density, which causes the lattice microstrain in acicular martensite, which was formed at the SLM process due to the high cooling rate.

Key words: 3D printing, selective laser melting, ultrasonic impact treatment, microstructure, phase composition, mechanical characteristics.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i02/0217.html

DOI: https://doi.org/10.15407/mfint.45.02.0217

PACS: 43.35.-c, 62.50.Ef, 68.35.Gy, 81.20.Ev, 81.20.-n, 81.40.-z

Citation: S. M. Voloshko, B. M. Mordyuk, M. O. Vasylyev, V. I. Zakiev, A. P. Burmak, and N. V. Franchik, Surface modification of 3D-printed alloy Ti–6Al–4V by ultrasonic impact treatment, Metallofiz. Noveishie Tekhnol., 45, No. 2: 217—237 (2023) (in Ukrainian)


REFERENCES
  1. B. Berman, Business Horizons, 55: 155 (2012). Crossref
  2. P. Wu, J. Wang, and X. Wang, Automation in Construction, 68: 21 (2016). Crossref
  3. B. Bhushan and M. Caspers, Microsyst. Technol., 23: 1117 (2017). Crossref
  4. D. Ngo Tuan, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Compo-sites Part B: Eng., 143: 172 (2018). Crossref
  5. D. L. Rakov, and R. Y. Sukhorukov, J. Mach. Manuf. Reliab., 50: 616 (2021). Crossref
  6. M. Srivastava, S. Rathee, S. Maheshwari, and T. K. Kundra, Additive manufac-turing: fundamentals and advancements (Taylor & Francis Group: 2019). Crossref
  7. S. Liu, and Y.C. Shin, Mater. Des., 164: 107552 (2019). Crossref
  8. Y.-L. Hao, S.-J. Li, and R. Yang, Rare Metals, 35: 661 (2016). Crossref
  9. K. Davidson and S. Singamneni, Mater. Manuf. Process., 31: 1543 (2016). Crossref
  10. D. Zhang, Q. Cai, and J. Liu, Mater. Manuf. Process., 27: 1267 (2012). Crossref
  11. B. V. Efremenko, V. I. Zurnadzhy, Yu. G. Chabak, V. G. Efremenko, K. V. Kudinova, and V. A. Mazur, Mater. Today: Proceed., 66: 2587 (2022). Crossref
  12. Y. Chabak, B. Efremenko, I. Petryshynets, V. Efremenko, A.G. Lekatou, V. Zurnadzhy, I. Bogomol, V. Fedun, K. Kovaľ and T. Pastukhova. Materials, 14: 7671 (2021). Crossref
  13. F. Y. Liao, G. Chen, C. X. Gao, and P. Z. Zhu, Adv. Eng. Mater., 4: 1801013 (2019).
  14. G. I. Prokopenko, B. M. Mordyuk, M. O. Vasyliev, S. M. Voloshko, Fizychni Osnovy Ul'trazvukovogo Udarnogo Zmitsnennya Metalevykh Poverkhon [Phys-ical Principles for Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  15. B. N. Mordyuk and G. I.Prokopenko, J. Sound. Vib., 308: 855 (2007). Crossref
  16. B. N. Mordyuk and G. I.Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  17. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14: 1 (2020). Crossref
  18. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref
  19. B. N. Mordyuk, A. I. Dekhtyar, D. G. Savvakin, and N. I. Khripta, J. Mater. Eng. Perform., 31: 5668 (2022). Crossref
  20. Z. Lin, K. Song, and X. H. Yu, J. Manuf. Process., 70: 24 (2021). Crossref
  21. J. Gou, Z. J. Wang, S. S. Hu, J. Shen, Y. Tian, G. C. Zhao, and Y. Q. Chen, J. Manuf. Process., 54: 148 (2020). Crossref
  22. B. M. Mordyuk, M. O. Vasylyev, S. M. Voloshko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1433 (2022) (in Ukrainian).
  23. https://alt-print.com/aerospace
  24. B. Wysocki, P. Maj, R. Sitek, J. Buhagiar, K. J. Kurzydłowski, and W. Swieszkowski, Appl. Sci., 7: 657 (2017). Crossref
  25. M. O. Vasylyev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 1: 49 (2017) (in Ukrainian).
  26. M. A. Vasylyev, B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and D. V.Pefti, Metallofiz. Noveishie Tekhnol., 42, No. 3: 381 (2020) (in Ukrainian).
  27. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Microme-chanical properties of bio-materials, in: Proc. SPIE 5959, Medical Imaging, 595916 (23. September 2005), Event: Congress on Optics and Optoelectronics, 2005, Warsaw, Poland.
  28. I. Zakiev, M. Storchak, G. A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics Int., 47, No. 21: 29638 (2021). Crossref
  29. M. Storchak, I. Zakiev, V. Zakiev, and A. Manokhin, Measurement, 191: 110745 (2022). Crossref
  30. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, V.I. Zakiyev, A. P. Burmak, and D.V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian).
  31. L. Facchini, E. Magalini, and P. Robotti, Rapid Prototyping J., 16: 450 (2010). Crossref
  32. T. Ahmed, and H. J. Rack, Mater. Sci. Eng. A, 243: 206 (1998). Crossref
  33. M. Motyka, A. Baran-Sadleja, J. Sieniawski, M. Wierzbinska, and K. Gancarczyk, Mater. Sci. Technol., 35: 260 (2019). Crossref
  34. B. N. Mordyuk, O. P. Karasevskaya, G. I. Prokopenko, and N. I. Khripta, Surf. Coat. Technol., 210: 54 (2012). Crossref
  35. B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Mater. Sci. Eng. A, 559: 453 (2013). Crossref
  36. O. I. Zaporozhets, B. N. Mordyuk, N. A. Dordienko, V. A. Mykhailovsky, and A. A. Halkina, Surf. Coat. Technol., 403, 126397 (2020). Crossref
  37. Z. G. Xiao, C. P. Chen, H. H. Zhu, Z. H. Hu, B. Nagarajan, L. Guo, and X. Y. Zeng, Mater. Des., 193: 108846 (2020). Crossref
  38. C. Pauzon, T. Mishurova, S. Evsevleev, S. Dubiez-Le Goff, S. Murugesan, G. Bruno, and E. Hryha, Additive Manuf., 47: 102340 (2021). Crossref
  39. T. Mishurova, S. Cabeza, K. Artzt, J. Haubrich, M. Klaus, C. Genzel, G. Requena, and G. Bruno, Materials, 10: 348 (2017). Crossref
  40. O. I. Zaporozhets, B. N. Mordyuk, N. A. Dordienko, V. A. Mykhailovsky, V. F. Mazanko, and O. P. Karasevskaya, Surf. Coat. Technol., 307: 693 (2016). Crossref
  41. T. Mishurova, K. Artzt, J. Haubrich, G. Requena, and G. Bruno, Metals, 9: 261 (2019). Crossref
  42. I. Yadroitsava, S. Grewar, D. Hattingh, and I. Yadroitsev, Mater. Sci. Forum, 828-829: 305 (2015). Crossref
  43. M. O. Vasylyev, B. N. Mordyuk, G. I. Prokopenko, S. M. Voloshko, L. F. Yatsenko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029 (2018) (in Ukrainian).
  44. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, and K. Wissenbach, Rapid Prototyping J., 16: 450 (2010). Crossref
  45. P. Jamshidi, M. Aristizabal, W. Kong, V. Villapun, S.C. Cox, L. M. Grover, and M. M. Attallah, Materials, 13: 2813 (2020). Crossref
  46. J. J. Yang, H. C. Yu, J. Yin, M. Gao, Z. Wang, and X. Y. Zeng, Mater. Des., 108: 308 (2016). Crossref
  47. G. Kasperovich and J. Hausmann, J. Mater. Proc. Technol., 220: 202 (2015). Crossref
  48. X. Yan, C. Chen, C. Huang, R. Bolot, M. Kuang, W. Ma, C. Coddet, H. Liao, and M. Liu, J. Alloys Compounds, 764: 10565 (2018). Crossref
  49. H. K. Rafi, N. V. Karthik, H. J. Gong, T. L. Starr, and B. E. Stucker, J. Mater. Eng. Perform., 22: 3872 (2013). Crossref
  50. A. V. Panin, M. S. Kazachenok, A. I. Kozelskaya, R. R. Balokhonov, V. A. Romanova, O. B. Perevalova, and Yu. I. Pochivalov, Mater. Des., 117: 371 (2017). Crossref