Вплив структурування поверхонь та вигладжування ковзанням на трибологічні властивості

В. Кошеля$^{1}$, П. Балон$^{2,3}$, С. Е. Рейман$^{1}$, Б. Кілбаса$^{2}$, Р. Смущ$^{1}$, М. Бембенек$^{3}$

$^{1}$Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
$^{2}$ZPU Mirosław Pogoda, 36 Wojska Polskiego al., PL-39300 Mielec, Poland
$^{3}$AGH University of Science and Technology, 30 Adama Mickiewicza Ave., PL-30059 Krakow, Poland

Отримано: 13.01.2023; остаточний варіант - 28.02.2023. Завантажити: PDF

Вивчення процесів формування поверхонь ковзання крицевих деталів і пар тертя уможливлює вирішення цілого ряду проблем, пов’язаних із парами ковзання, таких як: зменшення опору тертя, збільшення підйомної сили, керування щілинними потоками, розсіяння тепла та підвищення довговічности пар тертя. У статті представлено результати трибологічних випробувань, які моделюють вузол ковзання на основі обраних компонентів лопатевого насоса. Випробування проводилися на триботестері Т-11 (схема тертя штифта по диску) та порівнювалися зі схемами із стандартних елементів. Зміни поверхні в тестованих вузлах тертя включали використання двох додаткових процесів механічного оброблення, а саме, вигладжування ковзанням і текстурування. Матеріялом для зразків було азотовано та термічно оброблено крицю С22Е, а матеріялом для контрзразків було обрано крицю Е295 із твердістю у 160 $HB$ (без термооброблення). Застосування додаткового оброблення у вигляді вигладжування та текстурування на поверхнях ковзання значно понизило коефіцієнт тертя (приблизно на 15%) та зменшило опір руху для досліджуваної комбінації. Трибологічні випробування проводились у двох варіянтах, а саме, з постійною швидкістю ковзання та змінним навантаженням і з постійним навантаженням та змінною швидкістю ковзання близько 50%. Результати досліджень, наведені в даній роботі, можуть бути використані, зокрема для застосування під час виготовлення деталів інжекторних насосів.

Ключові слова: криця, поверхневе структурування, ковзне вигладжування, текстурування, мастильні кишені, трибологічні властивості.

URL: https://mfint.imp.kiev.ua/ua/abstract/v45/i03/0403.html

PACS: 46.55.+d, 62.20.Qp, 62.40.+i, 81.40.Lm, 81.40.Pq


ЦИТОВАНА ЛІТЕРАТУРА
  1. I. Yo. Popadyuk, I. P. Shats’kyi, V. M. Shopa, and A. S. Velychkovych, J. Math. Sci., 215: 243 (2016). Crossref
  2. L. Y. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 41, No. 5: 647 (2019) (in Ukrainian). Crossref
  3. L. Ya. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 39, No. 4: 517 (2017). (in Ukrainian). Crossref
  4. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022). Crossref
  5. I. P. Shatskyi, V. V. Perepichka, and L. Y. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian). Crossref
  6. I. P. Shatskii, J. Math. Sci., 103, No. 3: 357 (2001). Crossref
  7. M. Dutkiewicz, A. Velychkovych, I. Shatskyi, and V. Shopa, Mater., 15, No. 13: 4671 (2022). Crossref
  8. I. Shatskyi, I. Vytvytskyi, M. Senyushkovych, and A. Velychkovych, IOP Conf. Ser.: Mater. Sci. Eng., 564: 12073 (2019). Crossref
  9. A. Velychkovych, Eng. Solid Mechanics, 10, No. 3: 287 (2022). Crossref
  10. S. Noga, E. Rejman, P. Bałon, B. Kiełbasa, R. Smusz, and J. Szostak, Acta Mechanica et Automatica, 16, No. 3: 215 (2022). Crossref
  11. S. Dobrotvorskiy, M. Balog, Y. Basova, L. Dobrovolska, and A. Zinchenko, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Cham: Springer: 2020), p. 32.
  12. L. S. Saakiyan, A. P. Efremov, and L. Ya. Ropyak, Zashchita Metallov, 25, No. 2: 185 (1989) (in Russian).
  13. T. Shihab, P. Prysyazhnyuk, R. Andrusyshyn, L. Lutsak, O. Ivanov, and I. Tsap, Eastern-European J. Enterprise Technol., 1, No. 12 (103): 38 (2020). Crossref
  14. T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020).
  15. A. B. Melnick, V. K. Soolshenko, and K. H. Levchuk, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1387 (2020). Crossref
  16. Ya. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragašius, S. Baskutis, and R. Chatys, Eksploatacja i Niezawodnosc—Maintenance and Reliability, 24, No. 4: 655 (2022). Crossref
  17. Y. M. Kusyi and A. M. Kuk, J. Phys.: Conf. Ser., 1426: 012034 (2020). Crossref
  18. W. Dai, C. Li, D. He, D. Jia, Y. Zhang, and Z. Tan, Surf. Coat. Technol., 380: 125014 (2019). Crossref
  19. V. B. Kopei, O. R. Onysko, and V. G. Panchuk, J. Phys.: Conf. Ser., 1426, No. 1: 012033 (2020). Crossref
  20. I. Drach, V. Royzman, A. Bubulis, and K. Juzėnas, Mechanika, 27, No. 1: 45 (2021). Crossref
  21. V. Kotsyubynsky, L. Shyyko, T. Shihab, P. Prysyazhnyuk, V. Aulin, and V. Boichuk, Mater. Today: Proc., 35, No. 4: 538 (2019). Crossref
  22. M. Bembenek, J. Krawczyk, and K. Pańcikiewicz, Eng. Failure Analysis, 142: 106843 (2022). Crossref
  23. N. Senin and L. Blunt, Characterisation of Areal Surface Texture (Ed. R. Leach) (Berlin, Heidelberg: Springer: 2013), p. 179. Crossref
  24. V. S. Protsenko, L. S. Bobrova, S. A. Korniy, A. A. Kityk, and F. I. Danilov, Funct. Mater., 25, No. 3: 539 (2018).
  25. V. S. Protsenko, L. S. Bobrova, A. S. Baskevich, S. A. Korniy, and F. I. Danilov, J. Chem. Technol. Metallurgy, 53, No. 5: 906 (2018).
  26. L. Ropyak and V. Ostapovych, Eastern-European J. Enterprise Technol., 2, No. 5: 50 (2016) (in Ukrainian). Crossref
  27. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022). Crossref
  28. O. Ya. Dubei, T. F. Tutko, L. Ya. Ropyak, and M. V. Shovkoplias, Metallofiz. Noveishie Tekhnol., 44, No. 2: 251 (2022) (in Ukrainian). Crossref
  29. V. I. Lavrinenko, A. G. Lubnin, V. M. Tkach, I. P. Fesenko, and V. V. Smokvyna, J. Superhard Materials, 43, No. 2: 145 (2021). Crossref
  30. S. I. Kryshtopa, D. Y. Petryna, I. M. Bogatchuk, I. B. Prun’ko, and V. M. Mel’nyk, Mater. Sci., 53, No. 3: 351 (2017). Crossref
  31. V. B. Tarelnik, O. P. Gaponova, E. V. Konoplyantschenko, N. S. Yevtushenko, and V. A. Gerasimenko, Metallofiz. Noveishie Tekhnol., 11, No. 6: 795 (2018).
  32. V. M. Holubets, M. I. Pashechko, K. Dzedzic, J. Borc, and A. V. Tisov, J. Friction Wear, 41, No. 5: 443 (2020). Crossref
  33. V. V. Shyrokov, K. B. Vasyliv, Z. A. Duryahina, H. V. Laz’ko, and N. B. Rats’ka, Mater. Sci., 45, No. 4: 473 (2009). Crossref
  34. S. A. Klimenko, I. A. Podchernjaeva, V. M. Beresnev, V. M. Panashenko, S. An. Klimenko, and M. Yu. Kopeikina, J. Superhard Materials, 36, No. 3: 208 (2014). Crossref
  35. L. Ropyak, T. Shihab, A. Velychkovych, V. Bilinskyi, V. Malinin, and M. Romaniv, Ceramics, 6, No. 1: 146 (2023). Crossref
  36. M. M. Student, I. B. Ivasenko, V. M. Posuvailo, H. H. Veselivs’ka, A. Y. Pokhmurs’kyi, Y. Y. Sirak, and V. M. Yus’kiv, Mater. Sci., 54, No. 6: 899 (2019). Crossref
  37. L. Y. Ropyak, A. S. Velychkovych, V. S. Vytvytskyi, and M. V. Shovkoplias, J. Phys.: Conf. Ser., 1741, No. 1: 012039 (2021). Crossref
  38. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Mater., 15, No. 14: 5074 (2022). Crossref
  39. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022).
  40. J. Pawlik, J. Cieślik, M. Bembenek, T. Góral, S. Kapayeva, and M. Kapkenova, Mater., 15, No. 17: 6019 (2022). Crossref
  41. T. A. Shihab, L. S. Shlapak, N. S. Namer, P. M. Prysyazhnyuk, O. O. Ivanov, and M. J. Burda, J. Phys.: Conf. Ser., 1741: 012031 (2021). Crossref
  42. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Appl. Surf. Sci., 470: 44 (2019). Crossref
  43. D. Pavlenko, E. Kondratiuk, Y. Torba, Y. Vyshnepolskyi, and D. Stepanov, Eastern-European J. Enterprise Technol., 1, No. 12 (115): 31 (2022). Crossref
  44. J. Kusyj and A. Kuk, Eastern-European J. Enterprise Technol., 1, No. 7 (73): 41 (2015). Crossref
  45. I. Shepelenko, Y. Tsekhanov, M. Storchak, Y. Nemyrovskyi, and V. Cherkun, Advanced Manufacturing Processes II (Eds. V. Tonkonogei, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Cham: Springer: 2021), p. 619.
  46. O. V. Maksymiv, V. I. Kyryliv, V. P. Chaikovskyi, B. R. Tsizh, A. M. Kostruba, and V. I. Hurei, Mater. Sci., 56, No. 4: 523 (2021). Crossref
  47. V. I. Kyryliv, V. I. Gurey, O. V. Maksymiv, I. V. Hurey, and Y. O. Kulyk, Mater. Sci., 57, No. 3: 422 (2021). Crossref
  48. A. Raza and S. Kumar, Tribology International, 174: 107717 (2022). Crossref
  49. W. Brostow, K. Czechowski, W. Polowski, P. Rusek, D. Toboła, and I. Wronska, Materials Research Innovations, 17, No. 4: 269 (2013). Crossref
  50. D. F. Silva-Álvarez, A. Márquez-Herrera, A. Saldana-Robles, M. Zapata-Torres, R. Mis-Fernández, J. L. Pena-Chapa, J. Moreno-Palmerín, and E. Hernández-Rodríguez, J. Mater. Research Technol., 9, No. 4: 7592 (2020). Crossref
  51. M. Bembenek, R. Kudelski, J. Pawlik, and Ł. Kowalski, Mater., 14, No. 19: 5625 (2021). Crossref
  52. M. Nalbant, H. Gökkaya, I. Toktaş, and G. Sur, Robotics and Computer Integrated Manufacturing, 25, No. 1: 211 (2009). Crossref
  53. K. Kumar and K. E. Prasad, IOSR J. Mechanical and Civil Engineering, 12 No. 1: 1 (2016).
  54. T. G. Mathia, P. Pawlus, and M. Wieczorowski, Wear, 271, No. 3–4: 494 (2011). Crossref
  55. V. Chomienne, F. Valirgue, J. Rech, and C. Vierdu, CIRP J. Manufacturing Sci. Technol., 13: 90 (2016). Crossref
  56. J. T. Maximov, G. V. Duncheva, A. P. Anchev, N. Ganev, I. M. Amudjev, and V. P. Dunchev, J Braz. Soc. Mech. Sci. Eng., 40: 194 (2018). Crossref
  57. K. L. Lyon, T. J. Marrow, and S. B. Lyon, J. Mater. Processing Technol., 218: 32 (2015). Crossref
  58. W. Koszela, Head for Performing Lubricating Micropockets on the Surface of the Cylinder Liners, Patent 217855 PL (Published August, 2014) (in Polish).
  59. A. Kochman, Rotary Fuel Pump Head, Patent 233483 PL (Published November, 2019) (in Polish).
  60. W. Koszela, Kształtowanie Regularnej Struktury Geometrycznej na Powierzchniach Elementów Trących [Formation of a Regular Geometric Structure on the Surfaces of Rubbing Elements] (Rzeszów: Wydawnictwo Naukowe Instytutu Technologii Eksploatacji w Radomiu: 2015) (in Polish).
  61. K. E. Oczoś and V. Liubimov, Struktura Geometryczna Powierzchni: Podstawy Klasyfikacji z Atlasem Charakterystycznych Powierzchni Kształtowanych [Geometric Structure of Surfaces, Basics of Classification with an Atlas of Characteristic Shaped Surfaces] (Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej: 2003) (in Polish).
  62. D. Capanidis, Archives of Civil and Mechanical Engineering, 7, No. 4: 39 (2007). Crossref
  63. C. Gachot, A. Rosenkranz, S. M. Hsu, and H. L. Costa, Wear, 372–373: 21 (2017). Crossref
  64. T. Dyl, Archives of Metallurgy and Materials, 62, No. 2: 807 (2017). Crossref
  65. P. Bałon, A. Świątoniowski, E. Rejman, B. Kiełbasa, R. Smusz, J. Szostak, and Ł. Kowalski, Adv. Sci. Technol. Res. J., 14, No. 2: 155 (2020). Crossref
  66. Cogsdill Tool Products. Product Catalogue, https://www.cogsdill.com/products/burnishing-tools
  67. P. Bałon, E. Rejman, B. Kiełbasa, and R. Smusz, Mechanik, 95, No. 11: 43 (2022). Crossref
  68. M. Korzynski and T. Zarski, Surf. Coat. Technol., 307, Part A: 590 (2016). Crossref
  69. J. Kalisz, K. Żak, W. Grzesik, and K. Czechowski, J. Machine Eng., 15, No. 1: 71 (2015).
  70. P. Bednarski, D. Biało, W. Brostow, K. Czechowski, W. Polowski, P. Rusek, and D. Toboła, Mater. Sci.—Medžiagotyra, 19, No. 4: 367 (2013). Crossref
  71. K. Zaleski, Technologia Nagniatania Dynamicznego [Dynamic Burnishing Technology] (Liublin: Wydawnictwo Politechniki Lubelskiej: 2018) (in Polish).
  72. Taylor Hobson. Product Catalogue, https://www.taylor-hobson.com
  73. Z. Wang and D. Gao, Mater. Des., 53: 881 (2014). Crossref
  74. A. Codrignani, B. Frohnapfel, F. Magagnato, P. Schreiber, J. Schneider, and P. Gumbsch, Tribol. Int., 122: 46 (2018). Crossref